ANN—— Artificial Neural Networks 人工神經網絡
//定義人工神經網絡 CvANN_MLP bp; // Set up BPNetwork's parameters CvANN_MLP_TrainParams params; params.train_method=CvANN_MLP_TrainParams::BACKPROP; params.bp_dw_scale=0.1; params.bp_moment_scale=0.1; //params.train_method=CvANN_MLP_TrainParams::RPROP; //params.rp_dw0 = 0.1; //params.rp_dw_plus = 1.2; //params.rp_dw_minus = 0.5; //params.rp_dw_min = FLT_EPSILON; //params.rp_dw_max = 50.;
兩種訓練方法:BACKPROP 與 RPROP
BACKPROP的兩個參數:

RPROP的四個參數:

// training data float labels[3][5] = {{0,0,0,0,0},{1,1,1,1,1},{0,0,0,0,0}}; Mat labelsMat(3, 5, CV_32FC1, labels); float trainingData[3][5] = { {1,2,3,4,5},{111,112,113,114,115}, {21,22,23,24,25} }; Mat trainingDataMat(3, 5, CV_32FC1, trainingData); // layerSizes設置了有三個隱含層的網絡結構:輸入層,三個隱含層,輸出層。輸入層和輸出層節點數均為5,中間隱含層每層有兩個節點 Mat layerSizes=(Mat_<int>(1,5) << 5,2,2,2,5); //create第二個參數可以設置每個神經節點的激活函數,默認為CvANN_MLP::SIGMOID_SYM,即Sigmoid函數 //同時提供的其他激活函數有Gauss(CvANN_mlp::GAUSSIAN)和階躍函數(CvANN_MLP::IDENTITY)。
bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM); //CvANN_MLP::SIGMOID_SYM
bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);
//預測新節點 Mat sampleMat = (Mat_<float>(1,5) << i,j,0,0,0); Mat responseMat; bp.predict(sampleMat,responseMat);
float CvANN_MLP::predict(constMat&inputs,Mat&outputs)
圖像進行特征提取,把它保存在inputs里,通過調用predict函數,我們得到一個輸出向量,它是一個1*nClass的行向量,
其中每一列說明它與該類的相似程度(0-1之間),也可以說是置信度。我們只用對output求一個最大值,就可得到結果。
完整代碼:
#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/ml/ml.hpp> #include <iostream> #include <string> using namespace std; using namespace cv; int main() { CvANN_MLP bp; CvANN_MLP_TrainParams params; params.train_method=CvANN_MLP_TrainParams::BACKPROP; //(Back Propagation,BP)反向傳播算法 params.bp_dw_scale=0.1; params.bp_moment_scale=0.1; float labels[10][2] = {{0.9,0.1},{0.1,0.9},{0.9,0.1},{0.1,0.9},{0.9,0.1},{0.9,0.1},{0.1,0.9},{0.1,0.9},{0.9,0.1},{0.9,0.1}}; //這里對於樣本標記為0.1和0.9而非0和1,主要是考慮到sigmoid函數的輸出為一般為0和1之間的數,只有在輸入趨近於-∞和+∞才逐漸趨近於0和1,而不可能達到。 Mat labelsMat(10, 2, CV_32FC1, labels); float trainingData[10][2] = { {11,12},{111,112}, {21,22}, {211,212},{51,32}, {71,42}, {441,412},{311,312}, {41,62}, {81,52} }; Mat trainingDataMat(10, 2, CV_32FC1, trainingData); Mat layerSizes=(Mat_<int>(1,5) << 2, 2, 2, 2, 2); //5層:輸入層,3層隱藏層和輸出層,每層均為兩個perceptron bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM); bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params); int width = 512, height = 512; Mat image = Mat::zeros(height, width, CV_8UC3); Vec3b green(0,255,0), blue (255,0,0); for (int i = 0; i < image.rows; ++i) { for (int j = 0; j < image.cols; ++j) { Mat sampleMat = (Mat_<float>(1,2) << i,j); Mat responseMat; bp.predict(sampleMat,responseMat); float* p=responseMat.ptr<float>(0); // if (p[0] > p[1]) { image.at<Vec3b>(j, i) = green; } else { image.at<Vec3b>(j, i) = blue; } } } // Show the training data int thickness = -1; int lineType = 8; circle( image, Point(111, 112), 5, Scalar( 0, 0, 0), thickness, lineType); circle( image, Point(211, 212), 5, Scalar( 0, 0, 0), thickness, lineType); circle( image, Point(441, 412), 5, Scalar( 0, 0, 0), thickness, lineType); circle( image, Point(311, 312), 5, Scalar( 0, 0, 0), thickness, lineType); circle( image, Point(11, 12), 5, Scalar(255, 255, 255), thickness, lineType); circle( image, Point(21, 22), 5, Scalar(255, 255, 255), thickness, lineType); circle( image, Point(51, 32), 5, Scalar(255, 255, 255), thickness, lineType); circle( image, Point(71, 42), 5, Scalar(255, 255, 255), thickness, lineType); circle( image, Point(41, 62), 5, Scalar(255, 255, 255), thickness, lineType); circle( image, Point(81, 52), 5, Scalar(255, 255, 255), thickness, lineType); imwrite("result.png", image); // save the image imshow("BP Simple Example", image); // show it to the user waitKey(0); return 0; }
