python並發與web


python並發與web

python並發主要方式有:

  • Thread(線程)
  • Process(進程)
  • 協程
    python因為GIL的存在使得python的並發無法利用CPU多核的優勢以至於性能比較差,下面我們將通過幾個例子來介紹python的並發。

線程

我們通過一個簡單web server程序來觀察python的線程,首先寫一個耗時的小函數

def fib(n):
    if n <= 2:
        return 1
    else:
        return fib(n - 1) + fib(n - 2)

然后寫一個fib web server,程序比較簡單就不解釋了。

from socket import *
from fib import fib

def fib_server(address):
    sock = socket(AF_INET, SOCK_STREAM)
    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    sock.bind(address)
    sock.listen(5)
    while True:
        client, addr = sock.accept()
        print('Connection', addr)
        fib_handle(client)
    
def fib_handler(client):
    while True:
        req = client.recv(100)
        if not req:
            break
        n = int(req)
        result = fib(n)
        resp = str(result).encode('ascii') + b'\n'
        client.send(resp)
    print('Closed')

fib_server(('', 25002))

運行shell命令可以看到計算結果

nc localhost 25002

10

55

由於服務段是單線程的,如果另外啟動一個連接將得不到計算結果

nc localhost 25002

10

為了能讓我們的server支持多個請求,我們對服務端代碼加入多線程支持

#sever.py
#服務端代碼
from socket import *
from fib import fib
from threading import Thread

def fib_server(address):
    sock = socket(AF_INET, SOCK_STREAM)
    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    sock.bind(address)
    sock.listen(5)
    while True:
        client, addr = sock.accept()
        print('Connection', addr)
        #fib_handler(client)
        Thread(target=fib_handler, args=(client,), daemon=True).start() #需要在python3下運行

def fib_handler(client):
    while True:
        req = client.recv(100)
        if not req:
            break
        n = int(req)
        result = fib(n)
        resp = str(result).encode('ascii') + b'\n'
        client.send(resp)
    print('Closed')
    
fib_server(('', 25002)) #在25002端口啟動程序

運行shell命令可以看到計算結果

nc localhost 25002

10

55

由於服務端是多線程的,啟動一個新連接將得到計算結果

nc localhost 25002

10

55

性能測試

我們加入一段性能測試代碼

#perf1.py
from socket import *
from threading import Thread
import time

sock = socket(AF_INET, SOCK_STREAM)
sock.connect(('localhost', 25002))

n = 0

def monitor():
    global n
    while True:
        time.sleep(1)
        print(n, 'reqs/sec')
        n = 0
Thread(target=monitor).start()


while True:
    start = time.time()
    sock.send(b'1')
    resp = sock.recv(100)
    end = time.time()
    n += 1

#代碼非常簡單,通過全局變量n來統計qps(req/sec 每秒請求數)

在shell中運行perf1.py可以看到結果如下:

  • 106025 reqs/sec
  • 109382 reqs/sec
  • 98211 reqs/sec
  • 105391 reqs/sec
  • 108875 reqs/sec

平均每秒請求數大概是10w左右

如果我們另外啟動一個進程來進行性能測試就會發現python的GIL對線程造成的影響

python3 perf1.py

  • 74677 reqs/sec
  • 78284 reqs/sec
  • 72029 reqs/sec
  • 81719 reqs/sec
  • 82392 reqs/sec
  • 84261 reqs/sec

並且原來的shell中的qps也是類似結果

  • 96488 reqs/sec
  • 99380 reqs/sec
  • 84918 reqs/sec
  • 87485 reqs/sec
  • 85118 reqs/sec
  • 78211 reqs/sec

如果我們再運行

nc localhost 25002

40

來完全占用服務器資源一段時間,就可以看到shell窗口內的rqs迅速下降到

  • 99 reqs/sec
  • 99 reqs/sec

這也反映了Python的GIL的一個特點,會優先處理占用CPU資源大的任務

具體原因我也不知道,可能需要閱讀GIL實現源碼才能知道。

線程池在web編程的應用

python有個庫叫做cherrypy,最近用到,大致瀏覽了一下其源代碼,其內核使用的是python線程池技術。

cherrypy通過Python線程安全的隊列來維護線程池,具體實現為:

class ThreadPool(object):

    """A Request Queue for an HTTPServer which pools threads.

    ThreadPool objects must provide min, get(), put(obj), start()
    and stop(timeout) attributes.
    """

    def __init__(self, server, min=10, max=-1,
        accepted_queue_size=-1, accepted_queue_timeout=10):
        self.server = server
        self.min = min
        self.max = max
        self._threads = []
        self._queue = queue.Queue(maxsize=accepted_queue_size)
        self._queue_put_timeout = accepted_queue_timeout
        self.get = self._queue.get

    def start(self):
        """Start the pool of threads."""
        for i in range(self.min):
            self._threads.append(WorkerThread(self.server))
        for worker in self._threads:
            worker.setName('CP Server ' + worker.getName())
            worker.start()
        for worker in self._threads:
            while not worker.ready:
                time.sleep(.1)
         ....
  
    def put(self, obj):
        self._queue.put(obj, block=True, timeout=self._queue_put_timeout)
        if obj is _SHUTDOWNREQUEST:
            return

    def grow(self, amount):
        """Spawn new worker threads (not above self.max)."""
        if self.max > 0:
            budget = max(self.max - len(self._threads), 0)
        else:
            # self.max <= 0 indicates no maximum
            budget = float('inf')

        n_new = min(amount, budget)

        workers = [self._spawn_worker() for i in range(n_new)]
        while not all(worker.ready for worker in workers):
            time.sleep(.1)
        self._threads.extend(workers)

        ....
        
    def shrink(self, amount):
        """Kill off worker threads (not below self.min)."""
        [...]

    def stop(self, timeout=5):
        # Must shut down threads here so the code that calls
        # this method can know when all threads are stopped.
        [...]
        

可以看出來,cherrypy的線程池將大小初始化為10,每當有一個httpconnect進來時就將其放入任務隊列中,然后WorkerThread會不斷從任務隊列中取出任務執行,可以看到這是一個非常標准的線程池模型。

進程

由於Python的thread無法利用多核,為了充分利用多核CPU,Python可以使用了多進程來模擬線程以提高並發的性能。Python的進程代價比較高可以看做是另外再啟動一個python進程。

#server_pool.py

from socket import *
from fib import fib
from threading import Thread
from concurrent.futures import ProcessPoolExecutor as Pool #這里用的python3的線程池,對應python2的threadpool

pool = Pool(4) #啟動一個大小為4的進程池

def fib_server(address):
    sock = socket(AF_INET, SOCK_STREAM)
    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    sock.bind(address)
    sock.listen(5)
    while True:
        client, addr = sock.accept()
        print('Connection', addr)
        Thread(target=fib_handler, args=(client,), daemon=True).start()
    
def fib_handler(client):
    while True:
        req = client.recv(100)
        if not req:
            break
        n = int(req)
        future = pool.submit(fib, n)
        result = future.result()
        resp = str(result).encode('ascii') + b'\n'
        client.send(resp)
    print('Closed')

fib_server(('', 25002))

性能測試

可以看到新的server的qps為:

  • 4613 reqs/sec
  • 4764 reqs/sec
  • 4619 reqs/sec
  • 4393 reqs/sec
  • 4768 reqs/sec
  • 4846 reqs/sec

這個結果遠低於前面的10w qps主要原因是進程啟動速度較慢,進程池內部邏輯比較復雜,涉及到了數據傳輸,隊列等問題。

但是通過多進程我們可以保證每一個鏈接相對獨立,不會受其他請求太大的影響。

即使我們使用以下耗時的命令也不會影響到性能測試

nc localhost 25502

40

協程

協程簡介

協程是一個古老的概念,最早出現在早期的os中,它出現的時間甚至比線程進程還要早。

協程也是一個比較難以理解和運用的並發方式,用協程寫出來的代碼比較難以理解。

python中使用yield和next來實現協程的控制。

def count(n):
    while(n > 0):
        yield n   #yield起到的作用是blocking,將代碼阻塞在這里,生成一個generator,然后通過next調用。
        n -= 1
for i in count(5):
    print(i)
#可以看到運行結果:
5
4
3
2
1

下面我們通過例子來介紹如何書寫協程代碼。首先回到之前的代碼。首先我們要想到我們為什么要用線程,當然是為了防止阻塞,
這里的阻塞來自socket的IO和cpu占用2個方面。協程的引入也是為了防止阻塞,因此我們先將代碼中的阻塞點標記出來。

#sever.py
#服務端代碼
from socket import *
from fib import fib

def fib_server(address):
    sock = socket(AF_INET, SOCK_STREAM)
    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    sock.bind(address)
    sock.listen(5)
    while True:
        client, addr = sock.accept()  #blocking
        print('Connection', addr)
        fib_handler(client)

def fib_handler(client):
    while True:
        req = client.recv(100)    #blocking
        if not req:
            break
        n = int(req)
        result = fib(n)
        resp = str(result).encode('ascii') + b'\n'
        client.send(resp)    #blocking
    print('Closed')
    
fib_server(('', 25002)) #在25002端口啟動程序

上面標記了3個socket IO阻塞點,我們先忽略CPU占用。

  • 首先我們在blocking點插入yield語句,這樣做的原因就是,通過yield標記出blocking點以及blocking的原因,這樣我們就可以在調度的時候實現noblocking,我們調度的時候遇到yield語句並且block之后就可以直接去執行其他的請求而不用阻塞在這里,這里我們也將實現一個簡單的noblocking調度方法。
#sever.py
#服務端代碼
from socket import *
from fib import fib

def fib_server(address):
    sock = socket(AF_INET, SOCK_STREAM)
    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    sock.bind(address)
    sock.listen(5)
    while True:
        yield 'recv', sock
        client, addr = sock.accept()  #blocking
        print('Connection', addr)
        fib_handler(client)

def fib_handler(client):
    while True:
        yield 'recv', client
        req = client.recv(100)    #blocking
        if not req:
            break
        n = int(req)
        result = fib(n)
        resp = str(result).encode('ascii') + b'\n'
        yield 'send', client
        client.send(resp)    #blocking
    print('Closed')
    
fib_server(('', 25002)) #在25002端口啟動程序
  • 上述程序無法運行,因為我們還沒有一個yield的調度器,程序只是單純的阻塞在了yield所標記的地方,這也是協程的一個好處,可以人為來調度,不像thread一樣亂序執行。下面是包含了調度器的代碼。
from socket import *
from fib import fib
from threading import Thread
from collections import deque
from concurrent.futures import ProcessPoolExecutor as Pool
from select import select

tasks = deque()  
recv_wait = {}
send_wait = {}
def run():
    while any([tasks, recv_wait, send_wait]):
        while not tasks:
            can_recv, can_send, _ = select(recv_wait, send_wait, [])
            for s in can_recv:
                tasks.append(recv_wait.pop(s))
            for s in can_send:
                tasks.append(send_wait.pop(s))         
        task = tasks.popleft()
        try:
            why, what = next(task)
            if why == 'recv':
                recv_wait[what] = task
            elif why == 'send':
                send_wait[what] = task
            else:
                raise RuntimeError("ARG!")
        except StopIteration:
            print("task done")

def fib_server(address):
    sock = socket(AF_INET, SOCK_STREAM)
    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    sock.bind(address)
    sock.listen(5)
    while True:
        yield 'recv', sock
        client, addr = sock.accept()
        print('Connection', addr)
        tasks.append(fib_handler(client))
    
def fib_handler(client):
    while True:
        yield 'recv', client
        req = client.recv(100)
        if not req:
            break
        n = int(req)
        result = fib(n)
        resp = str(result).encode('ascii') + b'\n'
        yield 'send', client
        client.send(resp)
    print('Closed')

tasks.append(fib_server(('', 25003)))
run()
  • 我們通過輪詢+select來控制協程,核心是用一個task queue來維護程序運行的流水線,用recv_wait和send_wait兩個字典來實現任務的分發。

性能測試

可以看到新的server的qps為:

  • (82262, 'reqs/sec')
  • (82915, 'reqs/sec')
  • (82128, 'reqs/sec')
  • (82867, 'reqs/sec')
  • (82284, 'reqs/sec')
  • (82363, 'reqs/sec')
  • (82954, 'reqs/sec')

與之前的thread模型性能比較接近,協程的好處是異步的,但是協程 仍然只能使用到一個CPU

當我們讓服務器計算40的fib從而占滿cpu時,qps迅速下降到了0。

tornado 基於協程的 python web框架

tornado是facebook出品的異步web框架,tornado中協程的使用比較簡單,利用coroutine.gen裝飾器可以將自己的異步函數注冊進tornado的ioloop中,tornado異步方法一般的書寫方式為:

@gen.coroutime
def post(self):
    resp = yield GetUser()
    self.write(resp)

tornado異步原理

def start(self):
    """Starts the I/O loop.
    The loop will run until one of the I/O handlers calls stop(), which
    will make the loop stop after the current event iteration completes.
    """
    self._running = True
    while True:
    [ ... ]
        if not self._running:
            break
        [ ... ]
        try:
            event_pairs = self._impl.poll(poll_timeout)
        except Exception, e:
            if e.args == (4, "Interrupted system call"):
                logging.warning("Interrupted system call", exc_info=1)
                continue
            else:
                raise
        # Pop one fd at a time from the set of pending fds and run
        # its handler. Since that handler may perform actions on
        # other file descriptors, there may be reentrant calls to
        # this IOLoop that update self._events
        self._events.update(event_pairs)
        while self._events:
            fd, events = self._events.popitem()
            try:
                self._handlers[fd](fd, events)
            except KeyboardInterrupt:
                raise
            except OSError, e:
                if e[0] == errno.EPIPE:
                    # Happens when the client closes the connection
                    pass
                else:
                    logging.error("Exception in I/O handler for fd %d",
                                  fd, exc_info=True)
            except:
                logging.error("Exception in I/O handler for fd %d",fd, exc_info=True)

這是tornado異步調度的核心主循環,poll()方法返回一個形如(fd: events)的鍵值對,並賦值給event_pairs變量,在內部的while循環中,event_pairs中的內容被一個一個的取出,然后相應的處理器會被調用,tornado通過下面的函數講socket注冊進epoll中。tornado在linux默認選擇epoll,在windows下默認選擇select(只能選擇select)。

def add_handler(self, fd, handler, events):
    """Registers the given handler to receive the given events for fd."""
    self._handlers[fd] = handler
    self._impl.register(fd, events | self.ERROR)

cherrypy線程池與tornado協程的比較

我們通過最簡單程序運行在單機上進行性能比較

測試的語句為:

ab -c 100 -n 1000 -k localhost:8080/ | grep "Time taken for tests:"

其中cherrypy的表現為:

  • Completed 100 requests
  • Completed 200 requests
  • Completed 300 requests
  • Completed 400 requests
  • Completed 500 requests
  • Completed 600 requests
  • Completed 700 requests
  • Completed 800 requests
  • Completed 900 requests
  • Completed 1000 requests
  • Finished 1000 requests

Time taken for tests: 10.773 seconds

tornado的表現為:

  • Completed 100 requests
  • Completed 200 requests
  • Completed 300 requests
  • Completed 400 requests
  • Completed 500 requests
  • Completed 600 requests
  • Completed 700 requests
  • Completed 800 requests
  • Completed 900 requests
  • Completed 1000 requests
  • Finished 1000 requests

Time taken for tests: 0.377 seconds

可以看出tornado的性能還是非常驚人的,當應用程序涉及到異步IO還是要盡量使用tornado

總結

本文主要介紹了python的線程、進程和協程以及其應用,並對這幾種模型進行了簡單的性能分析,python由於GIL的存在,不管是線程還是協程都不能利用到多核。

  • 對於計算密集型的web app線程模型與協程模型的性能大致一樣,線程由於調度受操作系統管理,其性能略好。
  • 對於IO密集型的web app協程模型性能會有很大的優勢。

參考文獻


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM