如果你成天與編程為伍,那么並發這個名詞對你而言一定特別耳熟。需要並發的場景太多了,例如一個聊天程序,如果你想讓這個聊天程序能夠同時接收信息和發送信息,就一定會用到並發,無論那是什么樣的並發。
並發的意義就是:讓一個程序同時做多件事情!
理解這一點非常重要,是的,並發的目的只是為了能讓程序同時做另一件事情而已,並發的目的並不是讓程序運行的更快(如果是多核處理器,而且任務可以分成相互獨立的部分,那么並發確實可以讓事情解決的更快)。記得我學C++那時候開始接觸並發,還以為每開一個線程程序就會加速一倍呢。。。。
golang從語言級別上對並發提供了支持,而且在啟動並發的方式上直接添加了語言級的關鍵字。我並不會很多語言,而且也沒有很多的項目經驗,可能從我嘴里說出的比較不會非常客觀,但是起碼和C/C++(不考慮C++11)利用系統API來操作線程的方式相比,golang的並發機制運用起來就非常舒適了,不必非要按照固定的格式來定義線程函數,也不必因為啟動線程的時候只能給線程函數傳遞一個參數而煩惱。和Java相比的話,Go的優點就是並發的部分不必非得實現成一個class,而且更加輕量(其實我也不知道到底為什么更輕量^_^)。
因為最近自己想寫一個小開源項目,而且其中的關鍵部分會用到很多並發機制,於是開始重溫習Go的並發相關的知識。從我學習Go到現在已經將近1年了,覺得現在再重新看Go的並發時收獲頗多,因為畢竟寫了不少Go的小程序,遇到過許多解釋不通的現象和困惑,借着這次溫故知新的機會,把學習來的新經驗趕緊記錄下來,分享給各位網友尤其是喜歡Go的朋友們。
並發的啟動
這篇文章關於並發的啟動我就一概而過了,如果要讓一個函數並發運行,只需一個關鍵字"go":
- func Afuntion(para1, para2, para3, ...) {
- // Do some process
- // ...
- }
- func main() {
- go Afuntion(para1, para2, para3, ...) //只需加一個go前綴,Afunction()就會並發運行
- }
go的並發啟動非常簡單,幾乎沒有什么額外的准備工作,要並發的函數和一般的函數沒有什么區別,參數隨意,啟動的時候只需要加一個go關鍵之即可。
當然,並發的啟動沒什么好講的,並發最精髓的部分在於這些協程(協程類似於線程,但是是更輕量的線程)的調度。
我沒法以一個資深的老專家向你全方位的講解調度的各個方面,但是我可以把我遇到過的一些場景和我所用過的調度方法(所以絕對是能用的)分享給你。
go提供了sync包和channel機制來解決協程間的同步與通信。channel的用法非常靈活,使用的方式多種多樣,而且官網的Effective Go中給出了channel的一種並發以外的方式。我們先來介紹sync包提供的調度支持吧。
sync.WaitGroup
sync包中的WaitGroup實現了一個類似任務隊列的結構,你可以向隊列中加入任務,任務完成后就把任務從隊列中移除,如果隊列中的任務沒有全部完成,隊列就會觸發阻塞以阻止程序繼續運行,具體用法參考如下代碼:
- // 代碼粘上就可以跑通
- package main
- import (
- "fmt"
- "sync"
- )
- var waitgroup sync.WaitGroup
- func Afunction(shownum int) {
- fmt.Println(shownum)
- waitgroup.Done() //任務完成,將任務隊列中的任務數量-1,其實.Done就是.Add(-1)
- }
- func main() {
- for i := 0; i < 10; i++ {
- waitgroup.Add(1) //每創建一個goroutine,就把任務隊列中任務的數量+1
- go Afunction(i)
- }
- waitgroup.Wait() //.Wait()這里會發生阻塞,直到隊列中所有的任務結束就會解除阻塞
- }
我們可以利用sync.WaitGroup來滿足這樣的情況:
▲某個地方需要創建多個goroutine,並且一定要等它們都執行完畢后再繼續執行接下來的操作。
是的,WaitGroup最大的優點就是.Wait()可以阻塞到隊列中的任務都完畢后才解除阻塞。
channel
channel是一種golang內置的類型,英語的直譯為"通道",其實,它真的就是一根管道,而且是一個先進先出的數據結構。
我們能對channel進行的操作只有4種:
(1) 創建chennel (通過make()函數)
(2) 放入數據 (通過 channel <- data 操作)
(3) 取出數據 (通過 <-channel 操作)
(4) 關閉channel (通過close()函數)
但是channel有一些非常給力的性質需要你牢記,請一定要記住並理解好它們:
(1) channel是一種阻塞管道,是自動阻塞的。意思就是,如果管道滿了,一個對channel放入數據的操作就會阻塞,直到有某個routine從channel中取出數據,這個放入數據的操作才會執行。相反同理,如果管道是空的,一個從channel取出數據的操作就會阻塞,直到某個routine向這個channel中放入數據,這個取出數據的操作才會執行。這事channel最重要的一個性質,沒有之一。
- package main
- func main() {
- ch := make(chan int, 3)
- ch <- 1
- ch <- 1
- ch <- 1
- ch <- 1 //這一行操作就會發生阻塞,因為前三行的放入數據的操作已經把channel填滿了
- }
- package main
- func main() {
- ch := make(chan int, 3)
- <-ch //這一行會發生阻塞,因為channel才剛創建,是空的,沒有東西可以取出
- }
(2)channel分為有緩沖的channel和無緩沖的channel。兩種channel的創建方法如下:
- ch := make(chan int) //無緩沖的channel,同等於make(chan int, 0)
- ch := make(chan int, 5) //一個緩沖區大小為5的channel
操作一個channel時一定要注意其是否帶有緩沖,因為有些操作會觸發channel的阻塞導致死鎖。下面就來解釋這些需要注意的情景。
首先來看一個一個例子,這個例子是兩段只有主函數不同的代碼:
- package main
- import "fmt"
- func Afuntion(ch chan int) {
- fmt.Println("finish")
- <-ch
- }
- func main() {
- ch := make(chan int) //無緩沖的channel
- go Afuntion(ch)
- ch <- 1
- // 輸出結果:
- // finish
- }
- package main
- import "fmt"
- func Afuntion(ch chan int) {
- fmt.Println("finish")
- <-ch
- }
- func main() {
- ch := make(chan int) //無緩沖的channel
- //只是把這兩行的代碼順序對調一下
- ch <- 1
- go Afuntion(ch)
- // 輸出結果:
- // 死鎖,無結果
- }
前一段代碼最終會輸出"finish"並正常結束,但是后一段代碼會發生死鎖。為什么會出現這種現象呢,咱們把上面兩段代碼的邏輯跑一下。
第一段代碼:
1. 創建了一個無緩沖channel
2. 啟動了一個goroutine,這個routine中對channel執行取出操作,但是因為這時候channel為空,所以這個取出操作發生阻塞,但是主routine可沒有發生阻塞,它還在繼續運行呢
3. 主goroutine這時候繼續執行下一行,往channel中放入了一個數據
4. 這時阻塞的那個routine檢測到了channel中存在數據了,所以接觸阻塞,從channel中取出數據,程序就此完畢
第二段代碼:
1. 創建了一個無緩沖的channel
2. 主routine要向channel中放入一個數據,但是因為channel沒有緩沖,相當於channel一直都是滿的,所以這里會發生阻塞。可是下面的那個goroutine還沒有創建呢,主routine在這里一阻塞,整個程序就只能這么一直阻塞下去了,然后。。。然后就沒有然后了。。死鎖!
※從這里可以看出,對於無緩沖的channel,放入操作和取出操作不能再同一個routine中,而且應該是先確保有某個routine對它執行取出操作,然后才能在另一個routine中執行放入操作。
對於帶緩沖的channel,就沒那么多講究了,因為有緩沖空間,所以只要緩沖區不滿,放入操作就不會阻塞,同樣,只要緩沖區不空,取出操作就不會阻塞。而且,帶有緩沖的channel的放入和取出可以用在同一個routine中。
但是,並不是說有了緩沖就可以隨意使用channel的放入和取出了,我們一定要注意放入和取出的速率問題。下面我們就舉個例子來說明這種問題:
我們經常會用利用channel自動阻塞的性質來控制當前運行的goroutine的總數量,如下:
- package main
- import (
- "fmt"
- )
- func Afunction(ch chan int) {
- fmt.Println("finish")
- <-ch //goroutine執行完了就從channel取出一個數據
- }
- func main() {
- ch := make(chan int, 10)
- for i := 0; i < 1000; i++ {
- //每當創建goroutine的時候就向channel中放入一個數據,如果里面已經有10個數據了,就會
- //阻塞,由此我們將同時運行的goroutine的總數控制在<=10個的范圍內
- ch <- 1
- go Afunction(ch)
- }
- // 這里只是示范個例子,當然,接下來應該有些更加周密的同步操作
- }
上面這種channel的使用方式幾乎經常會用到,但是再看一下接下來這段代碼,它和上面這種使用channel的方式幾乎一樣,但是它會造成問題:
- package main
- func Afunction(ch chan int) {
- ch <- 1
- ch <- 1
- ch <- 1
- ch <- 1
- ch <- 1
- <-ch
- }
- func main() {
- //主routine的操作同上面那段代碼
- ch := make(chan int, 10)
- for i := 0; i < 100; i++ {
- ch <- 1
- go Afunction(ch)
- }
- // 這段代碼運行的結果為死鎖
- }
上面這段運行和之前那一段基本上原理是一樣的,但是運行后卻會發生死鎖。為什么呢?其實總結起來就一句話,"放得太快,取得太慢了"。
按理說,我們應該在我們主routine中創建子goroutine並每次向channel中放入數據,而子goroutine負責從channel中取出數據。但是我們的這段代碼在創建了子goroutine后,每個routine會向channel中放入5個數據。這樣,每向channel中放入6個數據才會執行一次取出操作,這樣一來就可能會有某一時刻,channel已經滿了,但是所有的routine都在執行放入操作(因為它們當前執行放入操作的概率是執行取出操作的6倍),這樣一來,所有的routine都阻塞了,從而導致死鎖。
在使用帶緩沖的channel時一定要注意放入與取出的速率問題。
(3)關閉后的channel可以取數據,但是不能放數據。而且,channel在執行了close()后並沒有真的關閉,channel中的數據全部取走之后才會真正關閉。
- package main
- func main() {
- ch := make(chan int, 5)
- ch <- 1
- ch <- 1
- close(ch)
- ch <- 1 //不能對關閉的channel執行放入操作
- // 會觸發panic
- }
- package main
- func main() {
- ch := make(chan int, 5)
- ch <- 1
- ch <- 1
- close(ch)
- <-ch //只要channel還有數據,就可能執行取出操作
- //正常結束
- }
- package main
- import "fmt"
- func main() {
- ch := make(chan int, 5)
- ch <- 1
- ch <- 1
- ch <- 1
- ch <- 1
- close(ch) //如果執行了close()就立即關閉channel的話,下面的循環就不會有任何輸出了
- for {
- data, ok := <-ch
- if !ok {
- break
- }
- fmt.Println(data)
- }
- // 輸出:
- // 1
- // 1
- // 1
- // 1
- //
- // 調用了close()后,只有channel為空時,channel才會真的關閉
- }
使用channel控制goroutine數量
channel的性質到這里就介紹完了,但是看上去,channel的使用似乎比WaitGroup要注意更多的細節,那么有什么理由一定要用channel來實現同步呢?channel相比WaitGroup有一個很大的優點,就是channel不僅可以實現協程的同步,而且可以控制當前正在運行的goroutine的總數。
下面就介紹幾種利用channel控制goroutine數量的方法:
一.如果任務數量是固定的:
- package main
- func Afunction(ch chan int) {
- ch <- 1
- }
- func main() {
- var (
- ch chan int = make(chan int, 20) //可以同時運行的routine數量為20
- dutycount int = 500
- )
- for i := 0; i < dutycount; i++ {
- go Afunction(ch)
- }
- //知道了任務總量,可以像這樣利用固定循環次數的循環檢測所有的routine是否工作完畢
- for i := 0; i < dutycount; i++ {
- <-ch
- }
- }
二.如果任務的數量不固定
- package main
- import (
- "fmt"
- )
- func Afunction(routineControl chan int, feedback chan string) {
- defer func() {
- <-routineControl
- feedback <- "finish"
- }()
- // do some process
- // ...
- }
- func main() {
- var (
- routineCtl chan int = make(chan int, 20)
- feedback chan string = make(chan string, 10000)
- msg string
- allwork int
- finished int
- )
- for i := 0; i < 1000; i++ {
- routineCtl <- 1
- allwork++
- go Afunction(routineCtl, feedback)
- }
- for {
- msg = <-feedback
- if msg == "finish" {
- finished++
- }
- if finished == allwork {
- break
- }
- }
- }
如果轉載請注明出處:http://blog.csdn.NET/gophers/article/details/24665419
