常見的機器學習&數據挖掘知識點


原文:http://blog.csdn.net/heyongluoyao8/article/details/47840255

 

常見的機器學習&數據挖掘知識點

轉載請說明出處

Basis(基礎):

  • SSE(Sum of Squared Error, 平方誤差和)
  • SAE(Sum of Absolute Error, 絕對誤差和)
  • SRE(Sum of Relative Error, 相對誤差和)
  • MSE(Mean Squared Error, 均方誤差)
  • RMSE(Root Mean Squared Error, 均方根誤差)
  • RRSE(Root Relative Squared Error, 相對平方根誤差)
  • MAE(Mean Absolute Error, 平均絕對誤差)
  • RAE(Root Absolute Error, 平均絕對誤差平方根)
  • MRSE(Mean Relative Square Error, 相對平均誤差)
  • RRSE(Root Relative Squared Error, 相對平方根誤差)
  • Expectation(期望)&Variance(方差)
  • Standard Deviation(標准差,也稱Root Mean Squared Error, 均方根誤差)
  • CP(Conditional Probability, 條件概率)
  • JP(Joint Probability, 聯合概率)
  • MP(Marginal Probability, 邊緣概率)
  • Bayesian Formula(貝葉斯公式)
  • CC(Correlation Coefficient, 相關系數)
  • Quantile (分位數)
  • Covariance(協方差矩陣)
  • GD(Gradient Descent, 梯度下降)
  • SGD(Stochastic Gradient Descent, 隨機梯度下降)
  • LMS(Least Mean Squared, 最小均方)
  • LSM(Least Square Methods, 最小二乘法)
  • NE(Normal Equation, 正規方程)
  • MLE(Maximum Likelihood Estimation, 極大似然估計)
  • QP(Quadratic Programming, 二次規划)
  • L1 /L2 Regularization(L1/L2正則, 以及更多的, 現在比較火的L2.5正則等)
  • Eigenvalue(特征值)
  • Eigenvector(特征向量)

Common Distribution(常見分布):

Discrete Distribution(離散型分布):

  • Bernoulli Distribution/Binomial Distribution(貝努利分布/二項分布)
  • Negative Binomial Distribution(負二項分布)
  • Multinomial Distribution(多項分布)
  • Geometric Distribution(幾何分布)
  • Hypergeometric Distribution(超幾何分布)
  • Poisson Distribution (泊松分布)

Continuous Distribution (連續型分布):

  • Uniform Distribution(均勻分布)
  • Normal Distribution/Gaussian Distribution(正態分布/高斯分布)
  • Exponential Distribution(指數分布)
  • Lognormal Distribution(對數正態分布)
  • Gamma Distribution(Gamma分布)
  • Beta Distribution(Beta分布)
  • Dirichlet Distribution(狄利克雷分布)
  • Rayleigh Distribution(瑞利分布)
  • Cauchy Distribution(柯西分布)
  • Weibull Distribution (韋伯分布)

Three Sampling Distribution(三大抽樣分布):

  • Chi-square Distribution(卡方分布)
  • t-distribution(t-分布)
  • F-distribution(F-分布)

Data Pre-processing(數據預處理):

  • Missing Value Imputation(缺失值填充)
  • Discretization(離散化)
  • Mapping(映射)
  • Normalization(歸一化/標准化)

Sampling(采樣):

  • Simple Random Sampling(簡單隨機采樣)
  • Offline Sampling(離線等可能K采樣)
  • Online Sampling(在線等可能K采樣)
  • Ratio-based Sampling(等比例隨機采樣)
  • Acceptance-rejection Sampling(接受-拒絕采樣)
  • Importance Sampling(重要性采樣)
  • MCMC(Markov Chain MonteCarlo 馬爾科夫蒙特卡羅采樣算法:Metropolis-Hasting& Gibbs)

Clustering(聚類):

  • K-MeansK-Mediods
  • 二分K-Means
  • FK-Means
  • Canopy
  • Spectral-KMeans(譜聚類)
  • GMM-EM(混合高斯模型-期望最大化算法解決)
  • K-Pototypes
  • CLARANS(基於划分)
  • BIRCH(基於層次)
  • CURE(基於層次)
  • STING(基於網格)
  • CLIQUE(基於密度和基於網格)
  • 2014年Science上的密度聚類算法等

Clustering Effectiveness Evaluation(聚類效果評估):

  • Purity(純度)
  • RI(Rand Index, 芮氏指標)
  • ARI(Adjusted Rand Index, 調整的芮氏指標)
  • NMI(Normalized Mutual Information, 規范化互信息)
  • F-meaure(F測量)

Classification&Regression(分類&回歸):

  • LR(Linear Regression, 線性回歸)
  • LR(Logistic Regression, 邏輯回歸)
  • SR(Softmax Regression, 多分類邏輯回歸)
  • GLM(Generalized Linear Model, 廣義線性模型)
  • RR(Ridge Regression, 嶺回歸/L2正則最小二乘回歸),LASSO(Least Absolute Shrinkage and Selectionator Operator , L1正則最小二乘回歸)
  • DT(Decision Tree決策樹)
  • RF(Random Forest, 隨機森林)
  • GBDT(Gradient Boosting Decision Tree, 梯度下降決策樹)
  • CART(Classification And Regression Tree 分類回歸樹)
  • KNN(K-Nearest Neighbor, K近鄰)
  • SVM(Support Vector Machine, 支持向量機, 包括SVC(分類)&SVR(回歸))
  • CBA(Classification based on Association Rule, 基於關聯規則的分類)
  • KF(Kernel Function, 核函數) 
    • Polynomial Kernel Function(多項式核函數)
    • Guassian Kernel Function(高斯核函數)
    • Radial Basis Function(RBF徑向基函數)
    • String Kernel Function 字符串核函數
  • NB(Naive Bayesian,朴素貝葉斯)
  • BN(Bayesian Network/Bayesian Belief Network/Belief Network 貝葉斯網絡/貝葉斯信度網絡/信念網絡)
  • LDA(Linear Discriminant Analysis/Fisher Linear Discriminant 線性判別分析/Fisher線性判別)
  • EL(Ensemble Learning, 集成學習) 
    • Boosting
    • Bagging
    • Stacking
    • AdaBoost(Adaptive Boosting 自適應增強)
  • MEM(Maximum Entropy Model, 最大熵模型)

Classification EffectivenessEvaluation(分類效果評估):

  • Confusion Matrix(混淆矩陣)
  • Precision(精確度)
  • Recall(召回率)
  • Accuracy(准確率)
  • F-score(F得分)
  • ROC Curve(ROC曲線)
  • AUC(AUC面積)
  • Lift Curve(Lift曲線)
  • KS Curve(KS曲線)

PGM(Probabilistic Graphical Models, 概率圖模型):

  • BN(BayesianNetwork/Bayesian Belief Network/ Belief Network , 貝葉斯網絡/貝葉斯信度網絡/信念網絡)
  • MC(Markov Chain, 馬爾科夫鏈)
  • MEM(Maximum Entropy Model, 最大熵模型)
  • HMM(Hidden Markov Model, 馬爾科夫模型)
  • MEMM(Maximum Entropy Markov Model, 最大熵馬爾科夫模型)
  • CRF(Conditional Random Field,條件隨機場)
  • MRF(Markov Random Field, 馬爾科夫隨機場)
  • Viterbi(維特比算法)

NN(Neural Network, 神經網絡)

  • ANN(Artificial Neural Network, 人工神經網絡)
  • SNN(Static Neural Network, 靜態神經網絡)
  • BP(Error Back Propagation, 誤差反向傳播)
  • HN(Hopfield Network)
  • DNN(Dynamic Neural Network, 動態神經網絡)
  • RNN(Recurrent Neural Network, 循環神經網絡)
  • SRN(Simple Recurrent Network, 簡單的循環神經網絡)
  • ESN(Echo State Network, 回聲狀態網絡)
  • LSTM(Long Short Term Memory, 長短記憶神經網絡)
  • CW-RNN(Clockwork-Recurrent Neural Network, 時鍾驅動循環神經網絡, 2014ICML)等.

Deep Learning(深度學習):

  • Auto-encoder(自動編碼器)
  • SAE(Stacked Auto-encoders堆疊自動編碼器) 
    • Sparse Auto-encoders(稀疏自動編碼器)
    • Denoising Auto-encoders(去噪自動編碼器)
    • Contractive Auto-encoders(收縮自動編碼器)
  • RBM(Restricted Boltzmann Machine, 受限玻爾茲曼機)
  • DBN(Deep Belief Network, 深度信念網絡)
  • CNN(Convolutional Neural Network, 卷積神經網絡)
  • Word2Vec(詞向量學習模型)

Dimensionality Reduction(降維):

  • LDA(Linear Discriminant Analysis/Fisher Linear Discriminant, 線性判別分析/Fish線性判別)
  • PCA(Principal Component Analysis, 主成分分析)
  • ICA(Independent Component Analysis, 獨立成分分析)
  • SVD(Singular Value Decomposition 奇異值分解)
  • FA(Factor Analysis 因子分析法)

Text Mining(文本挖掘):

  • VSM(Vector Space Model, 向量空間模型)
  • Word2Vec(詞向量學習模型)
  • TF(Term Frequency, 詞頻)
  • TF-IDF(TermFrequency-Inverse Document Frequency, 詞頻-逆向文檔頻率)
  • MI(Mutual Information, 互信息)
  • ECE(Expected Cross Entropy, 期望交叉熵)
  • QEMI(二次信息熵)
  • IG(Information Gain, 信息增益)
  • IGR(Information Gain Ratio, 信息增益率)
  • Gini(基尼系數)
  • x2 Statistic(x2統計量)
  • TEW(Text Evidence Weight, 文本證據權)
  • OR(Odds Ratio, 優勢率)
  • N-Gram Model
  • LSA(Latent Semantic Analysis, 潛在語義分析)
  • PLSA(Probabilistic Latent Semantic Analysis, 基於概率的潛在語義分析)
  • LDA(Latent Dirichlet Allocation, 潛在狄利克雷模型)
  • SLM(Statistical Language Model, 統計語言模型)
  • NPLM(Neural Probabilistic Language Model, 神經概率語言模型)
  • CBOW(Continuous Bag of Words Model, 連續詞袋模型)
  • Skip-gram(Skip-gram Model)

Association Mining(關聯挖掘):

  • Apriori算法
  • FP-growth(Frequency Pattern Tree Growth, 頻繁模式樹生長算法)
  • MSApriori(Multi Support-based Apriori, 基於多支持度的Apriori算法)
  • GSpan(Graph-based Substructure Pattern Mining, 頻繁子圖挖掘)

Sequential Patterns Analysis(序列模式分析)

  • AprioriAll
  • Spade
  • GSP(Generalized Sequential Patterns, 廣義序列模式)
  • PrefixSpan

Forecast(預測)

  • LR(Linear Regression, 線性回歸)
  • SVR(Support Vector Regression, 支持向量機回歸)
  • ARIMA(Autoregressive Integrated Moving Average Model, 自回歸積分滑動平均模型)
  • GM(Gray Model, 灰色模型)
  • BPNN(BP Neural Network, 反向傳播神經網絡)
  • SRN(Simple Recurrent Network, 簡單循環神經網絡)
  • LSTM(Long Short Term Memory, 長短記憶神經網絡)
  • CW-RNN(Clockwork Recurrent Neural Network, 時鍾驅動循環神經網絡)
  • ……

Linked Analysis(鏈接分析)

  • HITS(Hyperlink-Induced Topic Search, 基於超鏈接的主題檢索算法)
  • PageRank(網頁排名)

Recommendation Engine(推薦引擎):

  • SVD
  • Slope One
  • DBR(Demographic-based Recommendation, 基於人口統計學的推薦)
  • CBR(Context-based Recommendation, 基於內容的推薦)
  • CF(Collaborative Filtering, 協同過濾)
  • UCF(User-based Collaborative Filtering Recommendation, 基於用戶的協同過濾推薦)
  • ICF(Item-based Collaborative Filtering Recommendation, 基於項目的協同過濾推薦)

Similarity Measure&Distance Measure(相似性與距離度量):

  • EuclideanDistance(歐式距離)
  • Chebyshev Distance(切比雪夫距離)
  • Minkowski Distance(閔可夫斯基距離)
  • Standardized EuclideanDistance(標准化歐氏距離)
  • Mahalanobis Distance(馬氏距離)
  • Cos(Cosine, 余弦)
  • Hamming Distance/Edit Distance(漢明距離/編輯距離)
  • Jaccard Distance(傑卡德距離)
  • Correlation Coefficient Distance(相關系數距離)
  • Information Entropy(信息熵)
  • KL(Kullback-Leibler Divergence, KL散度/Relative Entropy, 相對熵)

Optimization(最優化):

Non-constrained Optimization(無約束優化):

  • Cyclic Variable Methods(變量輪換法)
  • Variable Simplex Methods(可變單純形法)
  • Newton Methods(牛頓法)
  • Quasi-Newton Methods(擬牛頓法)
  • Conjugate Gradient Methods(共軛梯度法)。

Constrained Optimization(有約束優化):

  • Approximation Programming Methods(近似規划法)
  • Penalty Function Methods(罰函數法)
  • Multiplier Methods(乘子法)。
  • Heuristic Algorithm(啟發式算法)
  • SA(Simulated Annealing, 模擬退火算法)
  • GA(Genetic Algorithm, 遺傳算法)
  • ACO(Ant Colony Optimization, 蟻群算法)

Feature Selection(特征選擇):

  • Mutual Information(互信息)
  • Document Frequence(文檔頻率)
  • Information Gain(信息增益)
  • Chi-squared Test(卡方檢驗)
  • Gini(基尼系數)

Outlier Detection(異常點檢測):

  • Statistic-based(基於統計)
  • Density-based(基於密度)
  • Clustering-based(基於聚類)。

Learning to Rank(基於學習的排序):

  • Pointwise 
    • McRank
  • Pairwise 
    • RankingSVM
    • RankNet
    • Frank
    • RankBoost;
  • Listwise 
    • AdaRank
    • SoftRank
    • LamdaMART

Tool(工具):

  • MPI
  • Hadoop生態圈
  • Spark
  • IGraph
  • BSP
  • Weka
  • Mahout
  • Scikit-learn
  • PyBrain
  • Theano 

以及一些具體的業務場景與case…


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM