基於各種分類算法的語音分類(年齡段識別)
概述
實習期間作為幫手打雜進行了一段時間的語音識別研究,內容是基於各種分類算法的語音的年齡段識別,總結一下大致框架,基本思想是:
-
獲取語料庫
TIMIT -
提取數據特征,進行處理
MFCC/i-vector
LDA/PLDA/PCA -
語料提取,基於分類算法進行分類
SVM/SVR/GMM/GBDT...
用到的工具有HTK(C,shell)/Kaldi(C++,shell)/LIBSVM(Python)/scikit-learn(Python)
獲取語料庫
TIMIT語料庫 http://www.cnblogs.com/welen/p/3782804.html
PS:
- TIMIT的語料語音(即子文件夾下的WAV文件)是SPHERE文件,可以用Kaldi轉換
- TIMIT/DOC/SPKRINFO.TXT中為speaker信息,作為分類條件
提取數據特征,進行處理
將SPHERE文件轉換為WAV文件
Kaldi中tools下有SPHERE文件轉換工具sph2pipe.exe
cd kaldi/kaldi-trunk/tools/sph2pipe_v2.5/
轉換方法
sph2pipe -f wav sourcefile targetfile
用re_sph2pipe.py腳本生成sph2pipe轉換文件
#encoding="utf-8"
import os
import os.path
rootdir = "E:/vc/TIMIT"
timitpath = "/home/zhangzd/kaldi/kaldi-trunk/TIMIT"
sph2pipepath = "/home/zhangzd/kaldi/kaldi-trunk/tools/sph2pipe_v2.5/sph2pipe"
f = open('E:/vc/data/mfcc/make_sph2pipe_file.txt','w')
for root,dirs,files in os.walk(rootdir):
for fn in files:
if fn[len(fn)-3:len(fn)]=='WAV':
sourcefile = timitpath+root[len(rootdir):]+"/"+fn
targetfile = root[len(root)-5:len(root)]+"_"+fn
s = sph2pipepath + " -f wav " + sourcefile+" "+targetfile+"\n"
f.write(s.replace('\\','/'))
f.close()
得到的轉換文件make_sph2pipe_file.txt如下
/home/zhangzd/kaldi/kaldi-trunk/tools/sph2pipe_v2.5/sph2pipe -f wav /home/zhangzd/kaldi/kaldi-trunk/TIMIT/CONVERT/SA1.WAV NVERT_SA1.WAV
/home/zhangzd/kaldi/kaldi-trunk/tools/sph2pipe_v2.5/sph2pipe -f wav /home/zhangzd/kaldi/kaldi-trunk/TIMIT/TIMIT/TEST/DR1/FAKS0/SA1.WAV FAKS0_SA1.WAV
/home/zhangzd/kaldi/kaldi-trunk/tools/sph2pipe_v2.5/sph2pipe -f wav /home/zhangzd/kaldi/kaldi-trunk/TIMIT/TIMIT/TEST/DR1/FAKS0/SA2.WAV FAKS0_SA2.WAV
...
最后在linux下執行shell命令
#!bin/sh
while read line
do
echo $line
done make_sph2pipe_file.txt
PS:
f.write(s.replace('\\','/'))
是因為在windows下用\\
表示路徑,在linux下用/
表示
在Kaldi中生成MFCC特征
解析/home/zhangzd/kaldi/kaldi-trunk/egs/wsj/s5/steps/make_mfcc.sh
中提取特征代碼為
$cmd JOB=1:$nj $logdir/make_mfcc_${name}.JOB.log \
compute-mfcc-feats --verbose=2 --config=$mfcc_config \
scp,p:$logdir/wav_${name}.JOB.scp ark:- \| \
copy-feats --compress=$compress ark:- \
ark,scp:$mfccdir/raw_mfcc_$name.JOB.ark,$mfccdir/raw_mfcc_$name.JOB.scp \
|| exit 1;
即生成MFCC命令為
compute-mfcc-feats --verbose=2 --config=config.txt scp,p:scp.txt ark:-|copy-feats ark:- ark,scp:mfcc.ark,mfcc.scp
config.txt格式為
--use-energy=false # only non-default option.
...
scp.txt格式為
FAKS0_SA1 /home/zhangzd/kaldi/kaldi-trunk/src/test/FAKS0_SA1.WAV
mfcc.scp格式為
FAKS0_SA1 /home/zhangzd/kaldi/kaldi-trunk/src/test/mfcc.ark
mfcc.ark會自動生成
HTK中生成MFCC特征
HTK更為簡單
HCopy -c config.txt -S scp.txt
config.txt格式為
SOURCEFORMAT = WAV # Gives the format of the speech files
TARGETKIND = MFCC_0_D_A # Identifier of the coefficients to use
# Unit = 0.1 micro-second :
WINDOWSIZE = 250000.0 # = 25 ms = length of a time frame
TARGETRATE = 100000.0 # = 10 ms = frame periodicity
NUMCEPS = 12 # Number of MFCC coeffs (here from c1 to c12)
USEHAMMING = T # Use of Hamming function for windowing frames
PREEMCOEF = 0.97 # Pre-emphasis coefficient
NUMCHANS = 26 # Number of filterbank channels
CEPLIFTER = 22 # Length of cepstral liftering
ENORMALIZE = T
scp.txt格式為
E:\vc\data\timit\FADG0_SA1.WAV E:\vc\data\mfcc\FADG0_SA1.mfcc
E:\vc\data\timit\FADG0_SA2.WAV E:\vc\data\mfcc\FADG0_SA2.mfcc
E:\vc\data\timit\FADG0_SI1279.WAV E:\vc\data\mfcc\FADG0_SI1279.mfcc
...
其他
- i-vector
- vad