具體代碼見https://github.com/zhiyishou/py-faster-rcnn
這是我對cup, glasses訓練的識別
faster-rcnn在fast-rcnn的基礎上加了rpn來將整個訓練都置於GPU內,以用來提高效率,這里我們將使用ImageNet的數據集來在faster-rcnn上來訓練自己的分類器。從ImageNet上可下載到很多類別的Image與bounding box annotation來進行訓練(每一個類別下的annotation都少於等於image的個數,所以我們從annotation來建立索引)。
在lib/dataset/factory.py
中提供了coco與voc的數據集獲取方法,而我們要做的就是在這里加上我們自己的ImageNet獲取方法,我們先來建立ImageNet數據獲取主文件。coco與pascal_voc的獲取都是繼承於父類imdb,所以我們可根據pascal_voc的獲取方法來做模板修改完成我們的ImageNet類。
創建ImageNet類
由於在faster-rcnn里使用rpn來代替了selective_search,所以我們可以在使用時直接略過有關selective_search的方法,根據pascal_voc類做模板,我們需要留下的方法有:
__init__ //初始化
image_path_at //根據數據集列表的index來取圖片絕對地址
image_path_from_index //配合上面
_load_image_set_index //獲取數據集列表
_gt_roidb //獲取ground-truth數據
rpn_roidb //獲取region proposal數據
_load_rpn_roidb //根據gt_roidb生成rpn_roidb數據並合成
_load_psacal_annotation //加載annotation文件並對bounding box進行數據整理
__init__:
def __init__(self, image_set):
imdb.__init__(self, 'imagenet')
self._image_set = image_set
self._data_path = os.path.join(cfg.DATA_DIR, "imagenet")
#類別與對應的wnid,可以修改成自己要訓練的類別
self._class_wnids = {
'cup': 'n03147509',
'glasses': 'n04272054'
}
#類別,修改類別時同時要修改這里
self._classes = ('__background__', self._class_wnids['cup'], self._class_wnids['glasses'])
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
#bounding box annotation 文件的目錄
self._xml_path = os.path.join(self._data_path, "Annotations")
self._image_ext = '.JPEG'
#我們使用xml文件名來做數據集的索引
# the xml file name and each one corresponding to image file name
self._image_index = self._load_xml_filenames()
self._salt = str(uuid.uuid4())
self._comp_id = 'comp4'
self.config = {'cleanup' : True,
'use_salt' : True,
'use_diff' : False,
'matlab_eval' : False,
'rpn_file' : None,
'min_size' : 2}
assert os.path.exists(self._data_path), \
'Path does not exist: {}'.format(self._data_path)
image_path_at
def image_path_at(self, i):
#使用index來從xml_filenames取到filename,生成絕對路徑
return self.image_path_from_image_filename(self._image_index[i])
image_path_from_image_filename(類似pascal_voc中的image_path_from_index)
def image_path_from_image_filename(self, image_filename):
image_path = os.path.join(self._data_path, 'Images',
image_filename + self._image_ext)
assert os.path.exists(image_path), \
'Path does not exist: {}'.format(image_path)
return image_path
_load_xml_filenames(類似pascal_voc中的_load_image_set_index)
def _load_xml_filenames(self):
#從Annotations文件夾中拿取到bounding box annotation文件名
#用來做數據集的索引
xml_folder_path = os.path.join(self._data_path, "Annotations")
assert os.path.exists(xml_folder_path), \
'Path does not exist: {}'.format(xml_folder_path)
for dirpath, dirnames, filenames in os.walk(xml_folder_path):
xml_filenames = [xml_filename.split(".")[0] for xml_filename in filenames]
return xml_filenames
gt_roidb
def gt_roidb(self):
#Ground-Truth 數據緩存
cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
#從xml中獲取Ground-Truth數據
gt_roidb = [self._load_imagenet_annotation(xml_filename)
for xml_filename in self._image_index]
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
rpn_roidb
def rpn_roidb(self):
#根據gt_roidb生成rpn_roidb,並進行合並
gt_roidb = self.gt_roidb()
rpn_roidb = self._load_rpn_roidb(gt_roidb)
roidb = imdb.merge_roidbs(gt_roidb, rpn_roidb)
return roidb
_load_rpn_roidb
def _load_rpn_roidb(self, gt_roidb):
filename = self.config['rpn_file']
print 'loading {}'.format(filename)
assert os.path.exists(filename), \
'rpn data not found at: {}'.format(filename)
with open(filename, 'rb') as f:
box_list = cPickle.load(f)
return self.create_roidb_from_box_list(box_list, gt_roidb)
_load_imagenet_annotation(類似於pascal_voc中的_load_pascal_annotation)
def _load_imagenet_annotation(self, xml_filename):
#從annotation的xml文件中拿取bounding box數據
filepath = os.path.join(self._data_path, 'Annotations', xml_filename + '.xml')
#這里使用了ap,是我寫的一個annotation parser,在后面貼出代碼
#它會返回這個xml文件的wnid, 圖像文件名,以及里面包含的注解物體
wnid, image_name, objects = ap.parse(filepath)
num_objs = len(objects)
boxes = np.zeros((num_objs, 4), dtype=np.uint16)
gt_classes = np.zeros((num_objs), dtype=np.int32)
overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
seg_areas = np.zeros((num_objs), dtype=np.float32)
# Load object bounding boxes into a data frame.
for ix, obj in enumerate(objects):
box = obj["box"]
x1 = box['xmin']
y1 = box['ymin']
x2 = box['xmax']
y2 = box['ymax']
# 如果這個bounding box並不是我們想要學習的類別,那則跳過
# go next if the wnid not exist in declared classes
try:
cls = self._class_to_ind[obj["wnid"]]
except KeyError:
print "wnid %s isn't show in given"%obj["wnid"]
continue
boxes[ix, :] = [x1, y1, x2, y2]
gt_classes[ix] = cls
overlaps[ix, cls] = 1.0
seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1)
overlaps = scipy.sparse.csr_matrix(overlaps)
return {'boxes' : boxes,
'gt_classes': gt_classes,
'gt_overlaps' : overlaps,
'flipped' : False,
'seg_areas' : seg_areas}
annotation_parser.py文件
import os
import xml.dom.minidom
def getText(node):
return node.firstChild.nodeValue
def getWnid(node):
return getText(node.getElementsByTagName("name")[0])
def getImageName(node):
return getText(node.getElementsByTagName("filename")[0])
def getObjects(node):
objects = []
for obj in node.getElementsByTagName("object"):
objects.append({
"wnid": getText(obj.getElementsByTagName("name")[0]),
"box":{
"xmin": int(getText(obj.getElementsByTagName("xmin")[0])),
"ymin": int(getText(obj.getElementsByTagName("ymin")[0])),
"xmax": int(getText(obj.getElementsByTagName("xmax")[0])),
"ymax": int(getText(obj.getElementsByTagName("ymax")[0])),
}
})
return objects
def parse(filepath):
dom = xml.dom.minidom.parse(filepath)
root = dom.documentElement
image_name = getImageName(root)
wnid = getWnid(root)
objects = getObjects(root)
return wnid, image_name, objects
則對數據結構的要求是:
|---data
|---imagenet
|---Annotations
|---n03147509
|---n03147509_*.xml
|---...
|---n04272054
|---n04272054_*.xml
|---...
|---Images
|---n03147508_*.JPEG
|---...
|---n04272054_*.JPEG
|---...
同時我在github上也提供了draw方法,可以用來將bounding box畫於Image文件上,用來甄別該annotation的正確性
訓練
這樣,我們的ImageNet類則是生成好了,下面我們則可以訓練我們的數據,但是在開始之前,還有一件事情,那就是修改prototxt中的與類別數目有關的值,我將models/pascal_voc
拷貝到了models/imagenet
進行修改,比如我想要訓練ZF,如果使用的是train_faster_rcnn_alt_opt.py,則需要修改models/imagenet/ZF/faster_rcnn_alt_opt/
下的所有pt文件里的內容,用如下的法則去替換:
//num為類別的個數
input-data->num_classes = num
class_score->num_output = num
bbox_pred->num_output = num*4
我這里使用train_faster_rcnn_alt_opt.py進行的訓練,這樣的話則需要把添加的models/imagenet
作為可選項
//pt_type 則是添加的選擇項,默認使用psacal_voc的models
./tools/train_faster_rcnn_alt_opt.py --gpu 0 \
--net_name ZF \
--weights data/imagenet_models/ZF.v2.caffemodel[optional] \
--imdb imagenet \
--cfg experiments/cfgs/faster_rcnn_alt_opt.yml \
--pt_type imagenet
識別
這里我們則需要使用剛訓練出來的模型進行識別
#就像demo.py一樣,但是使用訓練的models,我創建了tools/classify.py來單獨識別
prototxt = os.path.join(cfg.ROOT_DIR, 'models/imagenet', NETS[args.demo_net][0], 'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
caffemodel = os.path.join(cfg.ROOT_DIR, 'output/faster_rcnn_alt_opt/imagenet/'+ NETS[args.demo_net][0] +'_faster_rcnn_final.caffemodel')
同樣,在識別前我們要對識別方法里的Classes進行修改,修改成你自己訓練的類別后
執行
./tools/classify.py --net zf
則可對data/demo
下的圖片文件使用訓練的zf網絡進行識別
Have fun