之前的博客我們已經對RNN模型有了個粗略的了解。作為一個時序性模型,RNN的強大不需要我在這里重復了。今天,讓我們來看看除了RNN外另一個特殊的,同時也是廣為人知的強大的神經網絡模型,即CNN模型。今天的討論主要是基於Tensorflow的CIFAR10教程,不過作為對比,我們也會對Tensorflow的MINST教程作解析以及對比。很快大家就會發現,邏輯上考慮,其實內容都是大同小異的。由於所對應的目標不一樣,在數據處理方面可能存在着些許差異,這里我們以CIFAR10的為基准,有興趣的朋友歡迎去閱讀並學習MNIST的過程,地址點擊這里。CIFAR10的英文教程在Tensorflow官網上可以獲得,教程代碼地址點擊這里。
CNN簡介
CNN是一個神奇的深度學習框架,也是深度學習學科里的一個異類。在被譽為AI寒冬的90年末到2000年初,在大部分學者都棄坑的情況下,CNN的效用卻不減反增,感謝Yann LeCun!CNN的架構其實很符合其名,Convolutional Neural Network,CNN在運做的開始運用了卷積(convolution)的概念,外加pooling等方式在多次卷積了圖像並形成多個特征圖后,輸入被平鋪開進入一個完全連接的多層神經網絡里(fully connected network)里,並由輸出的softmax來判斷圖片的分類情況。該框架的發展史也很有趣,早在90年代末,以LeCun命名的Le-Net5就已經聞名。在深度學習火熱后,更多的框架變種也接踵而至,較為聞名的包括多倫多大學的AlexNet,谷歌的GoogLeNet,牛津的OxfordNet外還有Network in Network(NIN),VGG16等多個network。最近,對物體識別的研究開發了RCNN框架,可見在深度學習發展迅猛的今天,CNN框架依然是很多著名研究小組的課題,特別是在了解了Alpha-Go的運作里也可以看到CNN的身影,可見其能力!至於CNN模型的基礎構架,這方面的資源甚多,就不一一列舉了。
CIFAR10代碼分析
在運行CIFAR10代碼時,你只需要下載該代碼,然后cd到代碼目錄后直接輸入python cifar10_train.py就可以了。默認的迭代步驟為100萬步,每一步驟需要約3~4秒,運行5小時可以完成近10萬步。由於根據cifar10_train.py的描述10萬步的准確率為86%左右,我們運行近5個小時左右就可以了,沒必要運行全部的100萬步。查看結果時,運行python cifar_10_eval.py就可以了。由於模型被存儲在了tmp目錄里,eval文件可以找尋到最近保存的模型並運行該模型,所以還是很方便的。這個系統在運行后可以從照片里識別10種不同的物體,包括飛機等。這么好玩的系統,快讓我們來看一看是怎么實現的吧!
首先,讓我們來看下cifar1_train.py文件。文件里的核心為train函數,它的表現如下:
def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) # Get images and labels for CIFAR-10. # 輸入選用的是distored_inputs函數 images, labels = cifar10.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = cifar10.inference(images) # Calculate loss. loss = cifar10.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = cifar10.train(loss, global_step) # Create a saver. saver = tf.train.Saver(tf.all_variables()) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph) # 在最高的迭代步驟數里進行循環迭代 for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' # 每10個輸入數據顯示次step,loss,時間等運行數據 if step % 10 == 0: num_examples_per_step = FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) # 每100個輸入數據將網絡的狀況體現在summary里 if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. # 每1000個輸入數據保存次模型 if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step)
這個訓練函數本身邏輯很清晰,除了它運用了大量的cifar10.py文件里的函數外,一個值得注意的地方是輸入里應用的是distorded_inputs函數。這個很有意思,因為據論文表達,對輸入數據進行一定的處理后可以得到新的數據,這是增加數據存儲量的一個簡便的方法,那么具體它是如何做到的呢?讓我們來看看這個distorded_inputs函數。在cifar10.py文件里,distorded_inputs函數實質上是一個wrapper,包裝了來自cifar10_input.py函數里的distorted_inputs()函數。這個函數的邏輯如下:
def distorted_inputs(data_dir, batch_size): """Construct distorted input for CIFAR training using the Reader ops. Args: data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)] for f in filenames: if not tf.gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for training the network. Note the many random # distortions applied to the image. # Randomly crop a [height, width] section of the image. # 步驟1:隨機截取一個以[高,寬]為大小的圖矩陣。 distorted_image = tf.random_crop(reshaped_image, [height, width, 3]) # Randomly flip the image horizontally. # 步驟2:隨機顛倒圖片的左右。概率為50% distorted_image = tf.image.random_flip_left_right(distorted_image) # Because these operations are not commutative, consider randomizing # the order their operation. # 步驟3:隨機改變圖片的亮度以及色彩對比。 distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_whitening(distorted_image) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue) print ('Filling queue with %d CIFAR images before starting to train. ' 'This will take a few minutes.' % min_queue_examples) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=True)
這里每一張圖片被隨機的截取一片圖后有一定的概率被翻轉,改變亮度對比等步驟。另外,最后一段的意思為在queue里有了不少於40%的數據的時候訓練才能開始。那么在測試的時候,我們需要經過這個步驟么?答案是非也。在cifar10_input.py文件里,distorded_inputs函數的下方,一個名為inputs的函數代表了輸入被運用在eval時的邏輯。在輸入參數方面,這個inputs函數在保留了distorded_inputs的同時增加了一個名為eval_data的參數,一個bool參數代表了是運用訓練的數據還是測試的數據。下面,讓我們來大概看下這個函數的邏輯。
def inputs(eval_data, data_dir, batch_size): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ if not eval_data: filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN else: filenames = [os.path.join(data_dir, 'test_batch.bin')] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL for f in filenames: if not tf.gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for evaluation. # Crop the central [height, width] of the image.
# 截取圖片中心區域 resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, width, height) # Subtract off the mean and divide by the variance of the pixels.
# 平衡圖片的色差 float_image = tf.image.per_image_whitening(resized_image) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(num_examples_per_epoch * min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=False)
這里,我們看到截取只有圖片的中心,另外處理也只有平衡色差。但是,聰明的讀者朋友一定能想到,如果一張關於飛機的圖片是以飛機頭為圖片中心的,而訓練集合里所有的飛機圖片都是以機翼為圖片中心的話,我們之前的distorded_inputs函數將有機會截取飛機頭的區域,從而給我們的測試圖片提供相似信息。另外,隨機調整色差也包含了平均色差,所以我們的訓練集實質上包含了更廣,更多種的可能性,故可想而之會有機會得到更好的效果。
那么,講了關於輸入的小竅門,我們應該來看看具體的CNN模型了。如何制造一個CNN模型呢?讓我們先來看一個簡單的版本,即MNIST教程里的模型:
# The variables below hold all the trainable weights. They are passed an # initial value which will be assigned when we call: # {tf.initialize_all_variables().run()} conv1_weights = tf.Variable( tf.truncated_normal([5, 5, NUM_CHANNELS, 32], # 5x5 filter, depth 32. stddev=0.1, seed=SEED, dtype=data_type())) conv1_biases = tf.Variable(tf.zeros([32], dtype=data_type())) conv2_weights = tf.Variable(tf.truncated_normal( [5, 5, 32, 64], stddev=0.1, seed=SEED, dtype=data_type())) conv2_biases = tf.Variable(tf.constant(0.1, shape=[64], dtype=data_type())) fc1_weights = tf.Variable( # fully connected, depth 512. tf.truncated_normal([IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512], stddev=0.1, seed=SEED, dtype=data_type())) fc1_biases = tf.Variable(tf.constant(0.1, shape=[512], dtype=data_type())) fc2_weights = tf.Variable(tf.truncated_normal([512, NUM_LABELS], stddev=0.1, seed=SEED, dtype=data_type())) fc2_biases = tf.Variable(tf.constant( 0.1, shape=[NUM_LABELS], dtype=data_type())) # We will replicate the model structure for the training subgraph, as well # as the evaluation subgraphs, while sharing the trainable parameters. def model(data, train=False): """The Model definition.""" # 2D convolution, with 'SAME' padding (i.e. the output feature map has # the same size as the input). Note that {strides} is a 4D array whose # shape matches the data layout: [image index, y, x, depth]. conv = tf.nn.conv2d(data, conv1_weights, strides=[1, 1, 1, 1], padding='SAME') # Bias and rectified linear non-linearity. relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases)) # Max pooling. The kernel size spec {ksize} also follows the layout of # the data. Here we have a pooling window of 2, and a stride of 2. pool = tf.nn.max_pool(relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv = tf.nn.conv2d(pool, conv2_weights, strides=[1, 1, 1, 1], padding='SAME') relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases)) pool = tf.nn.max_pool(relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # Reshape the feature map cuboid into a 2D matrix to feed it to the # fully connected layers. pool_shape = pool.get_shape().as_list() reshape = tf.reshape( pool, [pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]]) # Fully connected layer. Note that the '+' operation automatically # broadcasts the biases. hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases) # Add a 50% dropout during training only. Dropout also scales # activations such that no rescaling is needed at evaluation time. if train: hidden = tf.nn.dropout(hidden, 0.5, seed=SEED) return tf.matmul(hidden, fc2_weights) + fc2_biases # Training computation: logits + cross-entropy loss. logits = model(train_data_node, True) loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits, train_labels_node)) # L2 regularization for the fully connected parameters. regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) + tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases)) # Add the regularization term to the loss. loss += 5e-4 * regularizers # Optimizer: set up a variable that's incremented once per batch and # controls the learning rate decay. batch = tf.Variable(0, dtype=data_type()) # Decay once per epoch, using an exponential schedule starting at 0.01. learning_rate = tf.train.exponential_decay( 0.01, # Base learning rate. batch * BATCH_SIZE, # Current index into the dataset. train_size, # Decay step. 0.95, # Decay rate. staircase=True) # Use simple momentum for the optimization. optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(loss, global_step=batch) # Predictions for the current training minibatch. train_prediction = tf.nn.softmax(logits) # Predictions for the test and validation, which we'll compute less often. eval_prediction = tf.nn.softmax(model(eval_data))
這段代碼很直白,在定義了convolution1,convolution2,fully_connected1和fully_connected2層神經網絡的weight和biases參數后,在模型函數里,我們通過conv2d, relu, max_pool等方式在兩次重復后將得到的結果重新整理后輸入那個fully connected的神經網絡中,即matmul(reshape,fc1_weights) + fc1_biases。之后再經歷了第二層的fully connected net后得到logits。定義loss以及optimizer等常見的過程后結果是由softmax來取得。這個邏輯我們在CIFAR10里也會見到,它的表達如下:
def inference(images): """Build the CIFAR-10 model. Args: images: Images returned from distorted_inputs() or inputs(). Returns: Logits. """ # We instantiate all variables using tf.get_variable() instead of # tf.Variable() in order to share variables across multiple GPU training runs. # If we only ran this model on a single GPU, we could simplify this function # by replacing all instances of tf.get_variable() with tf.Variable(). # # conv1 with tf.variable_scope('conv1') as scope: # 輸入的圖片由於是彩圖,有三個channel,所以在conv2d中,我們規定 # 輸出為64個channel的feature map。 kernel = _variable_with_weight_decay('weights', shape=[5, 5, 3, 64], stddev=1e-4, wd=0.0) conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) bias = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(bias, name=scope.name) _activation_summary(conv1) # pool1 pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # norm1 norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') # conv2 with tf.variable_scope('conv2') as scope: # 由於之前的輸出是64個channel,即我們這里的輸入,我們的shape就會 # 是輸入channel數為64,輸出,我們也規定為64 kernel = _variable_with_weight_decay('weights', shape=[5, 5, 64, 64], stddev=1e-4, wd=0.0) conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) bias = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(bias, name=scope.name) _activation_summary(conv2) # norm2 norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') # pool2 pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # local3 with tf.variable_scope('local3') as scope: # Move everything into depth so we can perform a single matrix multiply. reshape = tf.reshape(pool2, [FLAGS.batch_size, -1]) dim = reshape.get_shape()[1].value # 這里之前在reshape時的那個-1是根據tensor的大小自動定義為batch_size和 # 剩下的,所以我們剩下的就是一張圖的所有內容,我們將它訓練並map到384 # 個神經元節點上 weights = _variable_with_weight_decay('weights', shape=[dim, 384], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1)) local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) _activation_summary(local3) # local4 with tf.variable_scope('local4') as scope: #由於我們之前的節點有384個,這里我們進一步縮減為192個。 weights = _variable_with_weight_decay('weights', shape=[384, 192], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1)) local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name) _activation_summary(local4) # softmax, i.e. softmax(WX + b) with tf.variable_scope('softmax_linear') as scope: # 這是softmax輸出時的網絡,我們由192個節點map到輸出的不同數量上,這里假設 # 有10類,我們就輸出10個num_classes。 weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES], stddev=1/192.0, wd=0.0) biases = _variable_on_cpu('biases', [NUM_CLASSES], tf.constant_initializer(0.0)) softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name) _activation_summary(softmax_linear) return softmax_linear
這里的邏輯跟之前的在框架上基本一樣,不同在哪里呢?首先,這次我們的輸入是彩圖。學過圖片處理的朋友肯定知道彩圖有3個channel,而之前MNIST只是單個channel的灰白圖。所以,在我們制作feature map的時候,由1個channel map到了32個(注,那個NUM_CHANNELS是1)。這里我們不過把NUM_CHANNELS給直接寫為了3而已。另外,我們還運用了variable scope,這是一種很好的方式來界定何時對那些變量進行分享,同時,我們也不需要反復定義weight和biases的名字了。
對Loss的定義由loss函數寫明,其內容無非是運用了sparse_softmax_corss_entropy_with_logits,基本流程同於MNIST,這里將不詳細描述。最后,cifar10.py里的train函數雖然邏輯很簡單,但是也有值得注意的地方。代碼如下:
def train(total_loss, global_step): """Train CIFAR-10 model. Create an optimizer and apply to all trainable variables. Add moving average for all trainable variables. Args: total_loss: Total loss from loss(). global_step: Integer Variable counting the number of training steps processed. Returns: train_op: op for training. """ # Variables that affect learning rate. num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY) # Decay the learning rate exponentially based on the number of steps. lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE, global_step, decay_steps, LEARNING_RATE_DECAY_FACTOR, staircase=True) tf.scalar_summary('learning_rate', lr) # Generate moving averages of all losses and associated summaries. loss_averages_op = _add_loss_summaries(total_loss) # Compute gradients. # control dependencies的運用。這里只有loss_averages_op完成了 # 我們才會進行gradient descent的優化。 with tf.control_dependencies([loss_averages_op]): opt = tf.train.GradientDescentOptimizer(lr) grads = opt.compute_gradients(total_loss) # Apply gradients. apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) # Add histograms for trainable variables. for var in tf.trainable_variables(): tf.histogram_summary(var.op.name, var) # Add histograms for gradients. for grad, var in grads: if grad is not None: tf.histogram_summary(var.op.name + '/gradients', grad) # Track the moving averages of all trainable variables. variable_averages = tf.train.ExponentialMovingAverage( MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) with tf.control_dependencies([apply_gradient_op, variables_averages_op]): train_op = tf.no_op(name='train') return train_op
這里多出的一些內容為收集網絡運算時的一些臨時結果,如記錄所有的loss的loss_averages_op = _add_loss_summaries(total_loss)以及對參數的histogram:tf.histogram_summary(var.op.name, var)。值得注意的地方是這里多次地使用了control_dependency概念,即dependency條件沒有達成前,dependency內的代碼是不會運行的。這個概念在Tensorflow中有着重要的意義,這里是一個實例,給大家很好的闡述了這個概念,建議有興趣的朋友可以多加研究。至此,圖片的訓練便到此為止。
那么eval文件是如何評價模型的好壞的呢?讓我們來簡單的看下eval文件的內容。我們首先通過evaluate函數中的cifar10.inputs函數得到輸入圖片以及其對應的label,之后,通過之前介紹的inference函數,即CNN框架得到logits,之后我們通過tensorflow的in_top_k函數來判斷我們得到的那個logit是否在我們label里。這里的k被設置為1並對結果做展示以及記錄等工作。有興趣的朋友可以仔細閱讀這段代碼,這里將不詳細說明。
至此,系統完成,我們對於如何建立一個CNN系統有了初步了解。