difference between urllib and urllib2
自己翻譯的裝逼必備
What is the difference between urllib and urllib2 modules of Python? #python的urllib2模塊和urllib模塊之間有什么不同呢? You might be intrigued by the existence of two separate URL modules in Python - urllib and urllib2. Even more intriguing: they are not alternatives for each other. So what is the difference between urllib and urllib2, and do we need them both? #這兩個模塊你可能好奇,他們不是互相替代的模塊。所以什么是他們之間的不同呢?什么時候我們使用他們? urllib and urllib2 are both Python modules that do URL request related stuff but offer different functionalities. Their two most significant differences are listed below: #urlib和urlib2他們都是訪問URL相關請求功能的模塊,下面列出了他們之間的重要差異: urllib2 can accept a Request object to set the headers for a URL request, urllib accepts only a URL. That means, you cannot masquerade your User Agent string etc. #urlib2 可以接受請求對象去設置這個請求的頭部,urlib僅能接收一個URL意思是你不能偽裝你的用戶代理字符串。 urllib provides the urlencode method which is used for the generation of GET query strings, urllib2 doesn't have such a function. This is one of the reasons why urllib is often used along with urllib2. #urlib 提供了 urlencode 方法用戶生成和查詢字符串,urlib2不支持這個功能,這是為什么常常urlib和urlib2一起使用的原因 For other differences between urllib and urllib2 refer to their documentations, the links are given in the References section. #看下面的鏈接 Tip: if you are planning to do HTTP stuff only, check out httplib2, it is much better than httplib or urllib or urllib2. #如果你僅僅是要獲取http頁面的東西的話,看看httplib2,它是比httplib or urlib or urlib2 更好的~~
在查詢的時候看到的文章很不錯:
http://www.hacksparrow.com/python-difference-between-urllib-and-urllib2.html
References
在Python3中合並了 urllib 和 urllib2, 統一命名為 urllib 了
urllib
整個Urllib的源碼也就1000來行可以自己看下源碼~~,並且urllib2和urllib一樣也就一個文件~
1、urllib.urlopen(url, data=None, proxies=None, context=None)
打開一個url的方法,返回一個文件對象,然后可以進行類似文件對象的操作。
import urllib f = urllib.urlopen('http://www.baidu.com/') content = f.readlines() print content
對象返回的對象提供的方法如下:
#這些方法的使用方式與文件對象完全一樣 read() , readline() ,readlines() , fileno() , close() #返回一個請求頭信息 content = f.info() print content ''' info方法內部調用的是headers方法 def info(self): return self.headers ''' #返回請求的狀態碼信息 content = f.getcode() print content #返回請求的url信息 content = f.geturl() print content
2、urllib.urlencode(query) 將URL中的鍵值對一鏈接符&划分
>>> urllib.urlencode({'word':'luotianshuai','age':18}) 'age=18&word=luotianshuai'
所以我們可以結合urllib.urlopen來實現GET和POST請求
GET
import urllib params = urllib.urlencode({'word':'luotianshuai','age':18}) ''' >>> urllib.urlencode({'word':'luotianshuai','age':18}) 'age=18&word=luotianshuai' ''' f = urllib.urlopen('http://zhidao.baidu.com/search?%s' % params) print f.read()
POST
import urllib params = urllib.urlencode({'word':'luotianshuai','age':18}) ''' >>> urllib.urlencode({'word':'luotianshuai','age':18}) 'age=18&word=luotianshuai' ''' f = urllib.urlopen('http://zhidao.baidu.com/search',params) for i in f.read().split('\n'): print i
urllib2
import urllib2 import json import cookielib def urllib2_request(url, method="GET", cookie="", headers={}, data=None): """ :param url: 要請求的url :param cookie: 請求方式,GET、POST、DELETE、PUT.. :param cookie: 要傳入的cookie,cookie= 'k1=v1;k1=v2' :param headers: 發送數據時攜帶的請求頭,headers = {'ContentType':'application/json; charset=UTF-8'} :param data: 要發送的數據GET方式需要傳入參數,data={'d1': 'v1'} :return: 返回元祖,響應的字符串內容 和 cookiejar對象 對於cookiejar對象,可以使用for循環訪問: for item in cookiejar: print item.name,item.value """ if data: data = json.dumps(data) cookie_jar = cookielib.CookieJar() handler = urllib2.HTTPCookieProcessor(cookie_jar) opener = urllib2.build_opener(handler) opener.addheaders.append(['Cookie', 'k1=v1;k1=v2']) request = urllib2.Request(url=url, data=data, headers=headers) request.get_method = lambda: method response = opener.open(request) origin = response.read() return origin, cookie_jar # GET result = urllib2_request('http://127.0.0.1:8001/index/', method="GET") # POST result = urllib2_request('http://127.0.0.1:8001/index/', method="POST", data= {'k1': 'v1'}) # PUT result = urllib2_request('http://127.0.0.1:8001/index/', method="PUT", data= {'k1': 'v1'}) 封裝urllib請求
requests
上面是吧urllib2進行了封裝並沒有實現上傳文件要是上傳文件的話就更麻煩了,所以又出現了一個模塊requests上面的操作就相當於底層的東西了,requests對其進行了封裝!
所以我們只需安裝個包就OK了~
# 1、基本POST實例 import requests payload = {'key1': 'value1', 'key2': 'value2'} ret = requests.post("http://httpbin.org/post", data=payload) print ret.text # 2、發送請求頭和數據實例 import requests import json url = 'https://api.github.com/some/endpoint' payload = {'some': 'data'} headers = {'content-type': 'application/json'} ret = requests.post(url, data=json.dumps(payload), headers=headers) print ret.text print ret.cookies #向https://api.github.com/some/endpoint發送一個POST請求,將請求和相應相關的內容封裝在 ret 對象中。
二、其他請求
requests.get(url, params=None, **kwargs) requests.post(url, data=None, json=None, **kwargs) requests.put(url, data=None, **kwargs) requests.head(url, **kwargs) requests.delete(url, **kwargs) requests.patch(url, data=None, **kwargs) requests.options(url, **kwargs) # 以上方法均是在此方法的基礎上構建 requests.request(method, url, **kwargs)
requests模塊已經將常用的Http請求方法為用戶封裝完成,用戶直接調用其提供的相應方法即可,其中方法的所有參數有:
def request(method, url, **kwargs): """Constructs and sends a :class:`Request <Request>`. :param method: method for the new :class:`Request` object. :param url: URL for the new :class:`Request` object. :param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`. :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`. :param json: (optional) json data to send in the body of the :class:`Request`. :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`. :param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`. :param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': ('filename', fileobj)}``) for multipart encoding upload. :param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a :ref:`(connect timeout, read timeout) <timeouts>` tuple. :type timeout: float or tuple :param allow_redirects: (optional) Boolean. Set to True if POST/PUT/DELETE redirect following is allowed. :type allow_redirects: bool :param proxies: (optional) Dictionary mapping protocol to the URL of the proxy. :param verify: (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided. Defaults to ``True``. :param stream: (optional) if ``False``, the response content will be immediately downloaded. :param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair. :return: :class:`Response <Response>` object :rtype: requests.Response Usage:: >>> import requests >>> req = requests.request('GET', 'http://httpbin.org/get') <Response [200]> """ # By using the 'with' statement we are sure the session is closed, thus we # avoid leaving sockets open which can trigger a ResourceWarning in some # cases, and look like a memory leak in others. with sessions.Session() as session: return session.request(method=method, url=url, **kwargs)
更多requests模塊相關的文檔見:http://cn.python-requests.org/zh_CN/latest/
結合reques可以進行瀏覽器一模一樣的工作!
#!/usr/bin/env python #-*- coding:utf-8 -*- __author__ = 'luotianshuai' import requests import json login_dic = { 'email':'shuaige@qq.com', 'password':'shuaige!', '_ref':'frame', } login_ret = requests.post(url='https://huaban.com/auth/', data=login_dic, ) print login_ret.text print '*' * 50 check_my_info = requests.get(url='http://huaban.com/ugb8cx9ky3/following/') print check_my_info.text
舉例來說如果是在web上聊天原理上也是通過get或者post發送數據過去那么我們就可以通過reques來進行發送消息訪問各種url 大贊~~
scrapy
Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 其可以應用在數據挖掘,信息處理或存儲歷史數據等一系列的程序中。
其最初是為了頁面抓取 (更確切來說, 網絡抓取 )所設計的, 也可以應用在獲取API所返回的數據(例如 Amazon Associates Web Services ) 或者通用的網絡爬蟲。Scrapy用途廣泛,可以用於數據挖掘、監測和自動化測試。
requests本質就是就是發送http請求,如果在requests基礎上做個封裝,我去某個網站或者某個域名一直去發送請求找到所有的url,下載東西的請求在寫個方法源源不斷的下載東西!這樣我們就寫了個框架。
Scrapy 使用了 Twisted異步網絡庫來處理網絡通訊。整體架構大致如下
Scrapy主要包括了以下組件:
- 引擎(Scrapy)
用來處理整個系統的數據流處理, 觸發事務(框架核心) - 調度器(Scheduler)
用來接受引擎發過來的請求, 壓入隊列中, 並在引擎再次請求的時候返回. 可以想像成一個URL(抓取網頁的網址或者說是鏈接)的優先隊列, 由它來決定下一個要抓取的網址是什么, 同時去除重復的網址 - 下載器(Downloader)
用於下載網頁內容, 並將網頁內容返回給蜘蛛(Scrapy下載器是建立在twisted這個高效的異步模型上的) - 爬蟲(Spiders)
爬蟲是主要干活的, 用於從特定的網頁中提取自己需要的信息, 即所謂的實體(Item)。用戶也可以從中提取出鏈接,讓Scrapy繼續抓取下一個頁面 - 項目管道(Pipeline)
負責處理爬蟲從網頁中抽取的實體,主要的功能是持久化實體、驗證實體的有效性、清除不需要的信息。當頁面被爬蟲解析后,將被發送到項目管道,並經過幾個特定的次序處理數據。 - 下載器中間件(Downloader Middlewares)
位於Scrapy引擎和下載器之間的框架,主要是處理Scrapy引擎與下載器之間的請求及響應。 - 爬蟲中間件(Spider Middlewares)
介於Scrapy引擎和爬蟲之間的框架,主要工作是處理蜘蛛的響應輸入和請求輸出。 - 調度中間件(Scheduler Middewares)
介於Scrapy引擎和調度之間的中間件,從Scrapy引擎發送到調度的請求和響應。
Scrapy中的數據流由執行引擎控制,其過程如下:
- 引擎打開一個網站(open a domain),找到處理該網站的Spider並向該spider請求第一個要爬取的URL(s)。
- 引擎從Spider中獲取到第一個要爬取的URL並在調度器(Scheduler)以Request調度。
- 引擎向調度器請求下一個要爬取的URL。
- 調度器返回下一個要爬取的URL給引擎,引擎將URL通過下載中間件(請求(request)方向)轉發給下載器(Downloader)。
- 一旦頁面下載完畢,下載器生成一個該頁面的Response,並將其通過下載中間件(返回(response)方向)發送給引擎。
- 引擎從下載器中接收到Response並通過Spider中間件(輸入方向)發送給Spider處理。
- Spider處理Response並返回爬取到的Item及(跟進的)新的Request給引擎。
- 引擎將(Spider返回的)爬取到的Item給Item Pipeline,將(Spider返回的)Request給調度器。
- (從第二步)重復直到調度器中沒有更多地request,引擎關閉該網站。
一、安裝
pip install Scrapy #windows平台需要依賴pywin32,請根據自己系統32/64位選擇下載安裝,https://sourceforge.net/projects/pywin32/
在MAC安裝的時候遇到了個有趣的問題自己總結了下面的文檔~~,順便贊下Google
I resolved a problem ,when you you install scrapy-----{mac os system}, maybe you will get error like: ''' sted>=10.0.0->Scrapy) Installing collected packages: six, w3lib, parsel, PyDispatcher, Twisted, Scrapy Found existing installation: six 1.4.1 DEPRECATION: Uninstalling a distutils installed project (six) has been deprecated and will be removed in a future version. This is due to the fact that uninstalling a distutils project will only partially uninstall the project. Uninstalling six-1.4.1: Exception: Traceback (most recent call last): File "/Library/Python/2.7/site-packages/pip-8.1.1-py2.7.egg/pip/basecommand.py", line 209, in main status = self.run(options, args) File "/Library/Python/2.7/site-packages/pip-8.1.1-py2.7.egg/pip/commands/install.py", line 317, in run prefix=options.prefix_path, File "/Library/Python/2.7/site-packages/pip-8.1.1-py2.7.egg/pip/req/req_set.py", line 726, in install requirement.uninstall(auto_confirm=True) File "/Library/Python/2.7/site-packages/pip-8.1.1-py2.7.egg/pip/req/req_install.py", line 746, in uninstall paths_to_remove.remove(auto_confirm) File "/Library/Python/2.7/site-packages/pip-8.1.1-py2.7.egg/pip/req/req_uninstall.py", line 115, in remove renames(path, new_path) File "/Library/Python/2.7/site-packages/pip-8.1.1-py2.7.egg/pip/utils/__init__.py", line 267, in renames shutil.move(old, new) File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/shutil.py", line 302, in move copy2(src, real_dst) File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/shutil.py", line 131, in copy2 copystat(src, dst) File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/shutil.py", line 103, in copystat os.chflags(dst, st.st_flags) OSError: [Errno 1] Operation not permitted: '/tmp/pip-ZVi5QO-uninstall/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/six-1.4.1-py2.7.egg-info' You are using pip version 8.1.1, however version 8.1.2 is available. You should consider upgrading via the 'pip install --upgrade pip' command. LuoTimdeMacBook-Pro-2:~ luotim$ sudo pip install Scrapy --ingnore-installed six ''' Six is a Python 2 and 3 compatibility library. frist thanks google and what's fuck baidu ! so you should be do this to resolved the problem: 1、Download the six-1.10.0.tar.gz package wget https://pypi.python.org/packages/b3/b2/238e2590826bfdd113244a40d9d3eb26918bd798fc187e2360a8367068db/six-1.10.0.tar.gz#md5=34eed507548117b2ab523ab14b2f8b55 2、UnZip software package tar -zxvf six-1.10.0.tar.gz 3、Use this command to install it. cd cd six-1.10.0 sudo python setup.py install http://stackoverflow.com/questions/29485741/unable-to-upgrade-python-six-package-in-mac-osx-10-10-2
二、基本使用
1、創建項目
運行命令他和Django一樣要想穿件Project必須執行下面的命令:
scrapy startproject your_project_name
將會在執行命令的目錄自動創建如下文件:
LuoTimdeMacBook-Pro-2:day26 luotim$ tree meinv/ meinv/ ├── meinv │ ├── __init__.py │ ├── items.py │ ├── pipelines.py │ ├── settings.py │ └── spiders │ └── __init__.py └── scrapy.cfg 2 directories, 6 files
- scrapy.cfg 項目的配置信息,主要為Scrapy命令行工具提供一個基礎的配置信息。(真正爬蟲相關的配置信息在settings.py文件中)
- items.py 設置數據存儲模板,用於結構化數據,如:Django的Model
- pipelines 數據處理行為,如:一般結構化的數據持久化
- settings.py 配置文件,如:遞歸的層數、並發數,延遲下載等
- spiders 爬蟲目錄,如:創建文件,編寫爬蟲規則
2、編寫爬蟲
注意:一般創建爬蟲文件時,以網站域名命名
在spiders目錄中新建 xiaohuar_spider.py 文件
#!/usr/bin/env python #-*- coding:utf-8 -*- __author__ = 'luotianshuai' import scrapy #定義一個類 class XiaoHuarSpider(scrapy.spiders.Spider): #這個類是有名字的可以隨便定義 name = "xiaohuar" #定義限制只能在這個域名下爬 allowed_domains = ["xiaohuar.com"] #起始URL start_urls = [ "http://www.xiaohuar.com/hua/", ] ''' #當程序運行的時候,會自動執行我們定義的上面的類,並訪問start_urls並下載里面的內容封裝起來傳給parese中的"response" 這個都是scrapy內部干的 ''' def parse(self, response): # print(response, type(response)) # from scrapy.http.response.html import HtmlResponse # print(response.body_as_unicode()) '''然后就可以通過response獲取這次請求的相關信息''' current_url = response.url body = response.body unicode_body = response.body_as_unicode()
3、運行
進入project_name目錄,運行命令!
#進入scrapy項目目錄里 cd meinv #執行命令,這個spider_name就是在我們定義爬蟲的那個類里的name字段 scrapy crawl spider_name --nolog
4、遞歸的訪問
以上的爬蟲僅僅是爬去初始頁,而我們爬蟲是需要源源不斷的執行下去,直到所有的網頁被執行完畢
#!/usr/bin/env python #-*- coding:utf-8 -*- __author__ = 'luotianshuai' import scrapy from scrapy.http import Request from scrapy.selector import HtmlXPathSelector import re import urllib import os class XiaoHuarSpider(scrapy.spiders.Spider): name = "xiaohuar" allowed_domains = ["xiaohuar.com"] start_urls = [ "http://www.xiaohuar.com/list-1-1.html", ] def parse(self, response): ''' 1 分析頁面 2 找到頁面中符合規則的內容(校花圖片),保存 3 找到所有的a標簽,再訪問其他a標簽,一層一層的搞下去 ''' hxs = HtmlXPathSelector(response) ''' hxs = HtmlXPathSelector(response) #格式化源碼 #以前咱們從html頁面中去獲取某些數據的時候需要用正則,現在不用了scrapy給咱們提供了類選擇器 #只要創建一個對象然后他就會頁面中去找,他支持 --鏈式編程-- 類似於找: div[@class='xxx]的標簽 如果在加個/a 就是div[@class='xxx]/a 就是div下的class='xxx'的下面的a標簽 ''' # 如果url是 http://www.xiaohuar.com/list-1-\d+.html通過正則去判斷,這里首選需要了解的是 # 這個網站的URL設計就可以了,這是符合URL的 if re.match('http://www.xiaohuar.com/list-1-\d+.html', response.url): #這里是調用hxs然后去找到div下class='item_list infinite_scroll'下的div, #這個同樣也是需要看下網頁的設計結構,校花網的設計結構就是這樣的嘿嘿.... items = hxs.select('//div[@class="item_list infinite_scroll"]/div') for i in range(len(items)): #這個校花里的DIV是可以通過索引去取值的 src = hxs.select( '//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/a/img/@src' % i).extract() #@表示取里面的屬性 name = hxs.select( '//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/span/text()' % i).extract() school = hxs.select( '//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/div[@class="btns"]/a/text()' % i).extract() if src: ab_src = "http://www.xiaohuar.com" + src[0] file_name = "%s_%s.jpg" % (school[0].encode('utf-8'), name[0].encode('utf-8')) #這個方法下載文件,並且file_name為文件 urllib.urlretrieve(ab_src, file_name) # 獲取所有的url,繼續訪問,並在其中尋找相同的url all_urls = hxs.select('//a/@href').extract() #查找所有的A標簽有href屬性的URL #去循環他 for url in all_urls: #並且這里在加了一個判斷,也可以不加,並且符合 if url.startswith('http://www.xiaohuar.com/list-1-'): #如果你返回了一個URL並且有callback就會去遞歸,還去執行self.parse yield Request(url, callback=self.parse)
以上代碼將符合規則的頁面中的圖片保存在指定目錄,並且在HTML源碼中找到所有的其他 a 標簽的href屬性,從而“遞歸”的執行下去,直到所有的頁面都被訪問過為止。以上代碼之所以可以進行“遞歸”的訪問相關URL,關鍵在於parse方法使用了 yield Request對象。
執行效果,哇哦·
如果上面執行的話會下載很多層,我已我們可以設置層數:可以修改settings.py 中的配置文件,以此來指定“遞歸”的層數,如: DEPTH_LIMIT = 1

#!/usr/bin/env python # -*- coding:utf-8 -*- import scrapy import hashlib from tutorial.items import JinLuoSiItem from scrapy.http import Request from scrapy.selector import HtmlXPathSelector class JinLuoSiSpider(scrapy.spiders.Spider): count = 0 url_set = set() name = "jluosi" domain = 'http://www.jluosi.com' allowed_domains = ["jluosi.com"] start_urls = [ "http://www.jluosi.com:80/ec/goodsDetail.action?jls=QjRDNEIzMzAzOEZFNEE3NQ==", ] def parse(self, response): md5_obj = hashlib.md5() md5_obj.update(response.url) md5_url = md5_obj.hexdigest() if md5_url in JinLuoSiSpider.url_set: pass else: JinLuoSiSpider.url_set.add(md5_url) hxs = HtmlXPathSelector(response) if response.url.startswith('http://www.jluosi.com:80/ec/goodsDetail.action'): item = JinLuoSiItem() item['company'] = hxs.select('//div[@class="ShopAddress"]/ul/li[1]/text()').extract() item['link'] = hxs.select('//div[@class="ShopAddress"]/ul/li[2]/text()').extract() item['qq'] = hxs.select('//div[@class="ShopAddress"]//a/@href').re('.*uin=(?P<qq>\d*)&') item['address'] = hxs.select('//div[@class="ShopAddress"]/ul/li[4]/text()').extract() item['title'] = hxs.select('//h1[@class="goodsDetail_goodsName"]/text()').extract() item['unit'] = hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[1]//td[3]/text()').extract() product_list = [] product_tr = hxs.select('//table[@class="R_WebDetail_content_tab"]//tr') for i in range(2,len(product_tr)): temp = { 'standard':hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[%d]//td[2]/text()' %i).extract()[0].strip(), 'price':hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[%d]//td[3]/text()' %i).extract()[0].strip(), } product_list.append(temp) item['product_list'] = product_list yield item current_page_urls = hxs.select('//a/@href').extract() for i in range(len(current_page_urls)): url = current_page_urls[i] if url.startswith('http://www.jluosi.com'): url_ab = url yield Request(url_ab, callback=self.parse)
更多選擇器規則:http://scrapy-chs.readthedocs.io/zh_CN/latest/topics/selectors.html
5、格式化處理
上述實例只是簡單的圖片處理,所以在parse方法中直接處理。如果對於想要獲取更多的數據(獲取頁面的價格、商品名稱、QQ等),則可以利用Scrapy的items將數據格式化,然后統一交由pipelines來處理。
在items.py中創建類:
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class JieYiCaiItem(scrapy.Item): company = scrapy.Field() title = scrapy.Field() qq = scrapy.Field() info = scrapy.Field() more = scrapy.Field()
上述定義模板,以后對於從請求的源碼中獲取的數據同意按照此結構來獲取,所以在spider中需要有一下操作:
#!/usr/bin/env python # -*- coding:utf-8 -*- import scrapy import hashlib from beauty.items import JieYiCaiItem from scrapy.http import Request from scrapy.selector import HtmlXPathSelector from scrapy.spiders import CrawlSpider, Rule from scrapy.linkextractors import LinkExtractor class JieYiCaiSpider(scrapy.spiders.Spider): count = 0 url_set = set() name = "jieyicai" domain = 'http://www.jieyicai.com' allowed_domains = ["jieyicai.com"] start_urls = [ "http://www.jieyicai.com", ] rules = [ #下面是符合規則的網址,但是不抓取內容,只是提取該頁的鏈接(這里網址是虛構的,實際使用時請替換) #Rule(SgmlLinkExtractor(allow=(r'http://test_url/test?page_index=\d+'))), #下面是符合規則的網址,提取內容,(這里網址是虛構的,實際使用時請替換) #Rule(LinkExtractor(allow=(r'http://www.jieyicai.com/Product/Detail.aspx?pid=\d+')), callback="parse"), ] def parse(self, response): md5_obj = hashlib.md5() md5_obj.update(response.url) md5_url = md5_obj.hexdigest() if md5_url in JieYiCaiSpider.url_set: pass else: JieYiCaiSpider.url_set.add(md5_url) hxs = HtmlXPathSelector(response) if response.url.startswith('http://www.jieyicai.com/Product/Detail.aspx'): item = JieYiCaiItem() item['company'] = hxs.select('//span[@class="username g-fs-14"]/text()').extract() item['qq'] = hxs.select('//span[@class="g-left bor1qq"]/a/@href').re('.*uin=(?P<qq>\d*)&') item['info'] = hxs.select('//div[@class="padd20 bor1 comard"]/text()').extract() item['more'] = hxs.select('//li[@class="style4"]/a/@href').extract() item['title'] = hxs.select('//div[@class="g-left prodetail-text"]/h2/text()').extract() yield item current_page_urls = hxs.select('//a/@href').extract() for i in range(len(current_page_urls)): url = current_page_urls[i] if url.startswith('/'): url_ab = JieYiCaiSpider.domain + url yield Request(url_ab, callback=self.parse)
此處代碼的關鍵在於:
- 將獲取的數據封裝在了Item對象中
- yield Item對象 (一旦parse中執行yield Item對象,則自動將該對象交個pipelines的類來處理)
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import json from twisted.enterprise import adbapi import MySQLdb.cursors import re mobile_re = re.compile(r'(13[0-9]|15[012356789]|17[678]|18[0-9]|14[57])[0-9]{8}') phone_re = re.compile(r'(\d+-\d+|\d+)') class JsonPipeline(object): def __init__(self): self.file = open('/Users/wupeiqi/PycharmProjects/beauty/beauty/jieyicai.json', 'wb') def process_item(self, item, spider): line = "%s %s\n" % (item['company'][0].encode('utf-8'), item['title'][0].encode('utf-8')) self.file.write(line) return item class DBPipeline(object): def __init__(self): self.db_pool = adbapi.ConnectionPool('MySQLdb', db='DbCenter', user='root', passwd='123', cursorclass=MySQLdb.cursors.DictCursor, use_unicode=True) def process_item(self, item, spider): query = self.db_pool.runInteraction(self._conditional_insert, item) query.addErrback(self.handle_error) return item def _conditional_insert(self, tx, item): tx.execute("select nid from company where company = %s", (item['company'][0], )) result = tx.fetchone() if result: pass else: phone_obj = phone_re.search(item['info'][0].strip()) phone = phone_obj.group() if phone_obj else ' ' mobile_obj = mobile_re.search(item['info'][1].strip()) mobile = mobile_obj.group() if mobile_obj else ' ' values = ( item['company'][0], item['qq'][0], phone, mobile, item['info'][2].strip(), item['more'][0]) tx.execute("insert into company(company,qq,phone,mobile,address,more) values(%s,%s,%s,%s,%s,%s)", values) def handle_error(self, e): print 'error',e
上述中的pipelines中有多個類,到底Scapy會自動執行那個?哈哈哈哈,當然需要先配置了,不然Scapy就蒙逼了。。。
在settings.py中做如下配置:
ITEM_PIPELINES = { 'beauty.pipelines.DBPipeline': 300, 'beauty.pipelines.JsonPipeline': 100, } # 每行后面的整型值,確定了他們運行的順序,item按數字從低到高的順序,通過pipeline,通常將這些數字定義在0-1000范圍內。
更多請參見
武sir博客:http://www.cnblogs.com/wupeiqi/articles/5354900.html
Scrapy文檔:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html