win7(X64)系統下cuda7.5和VS2013的配置


&1 安裝

cuda7.5文件:鏈接:http://pan.baidu.com/s/1bU2zIQ 密碼:nvyw

 

&2 環境變量

注意:CUDA_PATH是安裝好cuda7.5之后會默認創建的,ProgramData是隱藏目錄,要修改其屬性,使其可見。

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v7.5

CUDA_LIB_PATH = %CUDA_PATH%\lib\x64

CUDA_BIN_PATH = %CUDA_PATH%\bin

CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\x64

CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64
 
然后,在系統的path變量之后追加下面一行:
 
;%CUDA_LIB_PATH%;%CUDA_BIN_PATH%;%CUDA_SDK_LIB_PATH%;%CUDA_SDK_BIN_PATH%;
 
 

&3 VS中的配置

  • 新建一個空的項目,右邊解決方案資源管理器,源文件上右鍵單擊->添加新建項->CUDA C/C++ file

  • 項目上右鍵單擊->生成依賴項->生成自定義,選擇CUDA7.5

  • 項目上右鍵單擊->屬性->配置屬性->VC++目錄->包含目錄

    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\include
    C:\ProgramData\NVIDIA Corporation\CUDA Samples\v7.5\common\inc

  • 項目上右鍵單擊->屬性->配置屬性->VC++目錄->庫目錄

    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\lib\x64
    C:\ProgramData\NVIDIA Corporation\CUDA Samples\v7.5\common\lib\x64

  • 項目上右鍵單擊->屬性->配置屬性->鏈接器->常規->附加庫目錄

    $(CUDA_PATH_V7_5)\lib\$(Platform)

  • 項目上右鍵單擊->屬性->配置屬性->鏈接器->輸入->附加依賴項

    cublas.lib
    cublas_device.lib
    cuda.lib
    cudadevrt.lib
    cudart.lib
    cudart_static.lib
    cufft.lib
    cufftw.lib
    curand.lib
    cusolver.lib
    cusparse.lib
    nppc.lib
    nppi.lib
    npps.lib
    nvblas.lib
    nvcuvid.lib
    nvrtc.lib
    OpenCL.lib

  就是C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\lib\x64目錄下的庫。

  • 單擊菜單欄中的生成->配置管理器

    將平台改為X64

 

&4 測試

  1 // CUDA runtime 庫 + CUBLAS 庫 
  2 #include "cuda_runtime.h" 
  3 #include "cublas_v2.h"
  4 
  5 #include <time.h> 
  6 #include <iostream>
  7 
  8 using namespace std;
  9 
 10 // 定義測試矩陣的維度 
 11 int const M = 5;
 12 int const N = 10;
 13 
 14 int main()
 15 {
 16 // 定義狀態變量 
 17 cublasStatus_t status;
 18 
 19 // 在 內存 中為將要計算的矩陣開辟空間 
 20 float *h_A = (float*)malloc(N*M*sizeof(float));
 21 float *h_B = (float*)malloc(N*M*sizeof(float));
 22 
 23 // 在 內存 中為將要存放運算結果的矩陣開辟空間 
 24 float *h_C = (float*)malloc(M*M*sizeof(float));
 25 
 26 // 為待運算矩陣的元素賦予 0-10 范圍內的隨機數 
 27 for (int i = 0; i<N*M; i++) {
 28 h_A[i] = (float)(rand() % 10 + 1);
 29 h_B[i] = (float)(rand() % 10 + 1);
 30 
 31 }
 32 
 33 // 打印待測試的矩陣 
 34 cout << "矩陣 A :" << endl;
 35 for (int i = 0; i<N*M; i++){
 36 cout << h_A[i] << " ";
 37 if ((i + 1) % N == 0) cout << endl;
 38 }
 39 cout << endl;
 40 cout << "矩陣 B :" << endl;
 41 for (int i = 0; i<N*M; i++){
 42 cout << h_B[i] << " ";
 43 if ((i + 1) % M == 0) cout << endl;
 44 }
 45 cout << endl;
 46 
 47 /*
 48 ** GPU 計算矩陣相乘
 49 */
 50 
 51 // 創建並初始化 CUBLAS 庫對象 
 52 cublasHandle_t handle;
 53 status = cublasCreate(&handle);
 54 
 55 if (status != CUBLAS_STATUS_SUCCESS)
 56 {
 57 if (status == CUBLAS_STATUS_NOT_INITIALIZED) {
 58 cout << "CUBLAS 對象實例化出錯" << endl;
 59 }
 60 getchar();
 61 return EXIT_FAILURE;
 62 }
 63 
 64 float *d_A, *d_B, *d_C;
 65 // 在 顯存 中為將要計算的矩陣開辟空間 
 66 cudaMalloc(
 67 (void**)&d_A, // 指向開辟的空間的指針 
 68 N*M * sizeof(float) // 需要開辟空間的字節數 
 69 );
 70 cudaMalloc(
 71 (void**)&d_B,
 72 N*M * sizeof(float)
 73 );
 74 
 75 // 在 顯存 中為將要存放運算結果的矩陣開辟空間 
 76 cudaMalloc(
 77 (void**)&d_C,
 78 M*M * sizeof(float)
 79 );
 80 
 81 // 將矩陣數據傳遞進 顯存 中已經開辟好了的空間 
 82 cublasSetVector(
 83 N*M, // 要存入顯存的元素個數 
 84 sizeof(float), // 每個元素大小 
 85 h_A, // 主機端起始地址 
 86 1, // 連續元素之間的存儲間隔 
 87 d_A, // GPU 端起始地址 
 88 1 // 連續元素之間的存儲間隔 
 89 );
 90 cublasSetVector(
 91 N*M,
 92 sizeof(float),
 93 h_B,
 94 1,
 95 d_B,
 96 1
 97 );
 98 
 99 // 同步函數 
100 cudaThreadSynchronize();
101 
102 // 傳遞進矩陣相乘函數中的參數,具體含義請參考函數手冊。 
103 float a = 1; float b = 0;
104 // 矩陣相乘。該函數必然將數組解析成列優先數組 
105 cublasSgemm(
106 handle, // blas 庫對象 
107 CUBLAS_OP_T, // 矩陣 A 屬性參數 
108 CUBLAS_OP_T, // 矩陣 B 屬性參數 
109 M, // A, C 的行數 
110 M, // B, C 的列數 
111 N, // A 的列數和 B 的行數 
112 &a, // 運算式的 α 值 
113 d_A, // A 在顯存中的地址 
114 N, // lda 
115 d_B, // B 在顯存中的地址 
116 M, // ldb 
117 &b, // 運算式的 β 值 
118 d_C, // C 在顯存中的地址(結果矩陣) 
119 M // ldc 
120 );
121 
122 // 同步函數 
123 cudaThreadSynchronize();
124 
125 // 從 顯存 中取出運算結果至 內存中去 
126 cublasGetVector(
127 M*M, // 要取出元素的個數 
128 sizeof(float), // 每個元素大小 
129 d_C, // GPU 端起始地址 
130 1, // 連續元素之間的存儲間隔 
131 h_C, // 主機端起始地址 
132 1 // 連續元素之間的存儲間隔 
133 );
134 
135 // 打印運算結果 
136 cout << "計算結果的轉置 ( (A*B)的轉置 ):" << endl;
137 
138 for (int i = 0; i<M*M; i++){
139 cout << h_C[i] << " ";
140 if ((i + 1) % M == 0) cout << endl;
141 }
142 
143 // 清理掉使用過的內存 
144 free(h_A);
145 free(h_B);
146 free(h_C);
147 cudaFree(d_A);
148 cudaFree(d_B);
149 cudaFree(d_C);
150 
151 // 釋放 CUBLAS 庫對象 
152 cublasDestroy(handle);
153 
154 getchar();
155 
156 return 0;
157 }
cuda7.5測試

 

 

 
 
 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM