Gauss濾波快速實現方法(轉)
二維高斯函數具有旋轉對稱性,處理后不會對哪一個方向上的邊緣進行了過多的濾波,因此相對其他濾波器,具有無法比擬的優越性。但是傳統Gauss濾波隨着圖像尺寸的增加,運算復雜度呈平方上漲,因此需要對其優化改進。下面,分別介紹傳統型,分解型和遞歸迭代型三種實現方法。
1 傳統型
Gauss濾波首先需要構建一個Gauss濾波核,公式為:
Matlab實現代碼:
dSigma =0.8; fK1=1.0/(2*dSigma*dSigma); fK2=fK1/pi; iSize = 5; step = floor(iSize/2 + 0.5); for i = 1 : iSize x=i-step; fTemp=fK2*exp(-x*x*fK1); for j = 1 : iSize y=j-step; model(x+step,y+step)=fTemp*exp(-y*y*fK1); end end dSum = sum(sum(model)); model = model/dSum; %Gauss核數值歸一化
圖1 Gauss濾波核(5*5大小)
接下來就是將輸入圖像和濾波核進行卷積操作。其實質就是對原始圖像進行加權求和,把這個“和”賦給中心像素。對於一個2048*2048的圖像,需要進行104734756次乘法運算,和104734756次加法運算,運算復雜度是很高的。
2 分解型
我們可以把一個二維Gauss核分解為兩個一維高斯核,然后先對行做一次一維卷積,再對這個卷積結果做一次一維列卷積,得到的結果完全一模一樣,而開銷會小很多。
一維高斯核函數:
Matlab代碼實現:
dSigma =0.8; fK1=1.0/(2*dSigma*dSigma); fK2=fK1/pi; iSize = 5; step = floor(iSize/2 + 0.5); for i = 1 : iSize x=i-step; fTemp=fK2*exp(-x*x*fK1); model(1,x+step) = fTemp; end dM = sum(model); model = model / dM;
圖2 一維高斯濾波核(1*5大小)
一維卷積原理和二維卷積一樣,只不過我們只需要將同一行或同一列上的數據,按位置一一加權求和,再把“和”賦給中心元素。
對於一個2048*2048的圖像,需要進行41918464次乘法運算,和41918464次加法運算。相比傳統運算量,只是前者的1/2.4985。如果遇到頻繁計算Gauss濾波的算法,后者明顯比前者速度快很多。
3 遞歸迭代型
第二種方法較第一種方法,雖然有了較大改善,但是任然復雜度較高。這里再介紹一種更快速的逼近Gauss濾波方法。
具體步驟分為兩步:首先對圖像做一次前向濾波,其次,對圖像再做一次后向濾波。
Forward:
Backward:
qFactor = 5; b0Coeff = 1.57825 + (2.44413 * qFactor) + (1.4281 * qFactor * qFactor) + (0.422205 * qFactor * qFactor * qFactor); b1Coeff = (2.44413 * qFactor) + (2.85619 * qFactor * qFactor) + (1.26661 * qFactor * qFactor * qFactor); b2Coeff = (-1.4281 * qFactor * qFactor) + (-1.26661 * qFactor * qFactor * qFactor); b3Coeff = 0.422205 * qFactor * qFactor * qFactor; normalizationCoeff = 1 - ((b1Coeff + b2Coeff + b3Coeff) / b0Coeff); vDenCoeff = [b0Coeff, -b1Coeff, -b2Coeff, -b3Coeff] / b0Coeff; vXSignal = zeros(61, 1); vXSignal(31) = 10; vYSignal = filter(normalizationCoeff, vDenCoeff, vXSignal); vYSignal = filter(normalizationCoeff, vDenCoeff, vYSignal(end:-1:1)); figure(); plot(vYSignal);
參考資料:Recursive implementation of the Gaussian filter。 Ian T. Young,1995
http://dsp.stackexchange.com/questions/22075/recursive-implementation-of-the-gaussian-filter