RANSAC算法詳解


原帖地址:http://grunt1223.iteye.com/blog/961063

另參考: http://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html
 
給定兩個點p1與p2的坐標,確定這兩點所構成的直線,要求對於輸入的任意點p3,都可以判斷它是否在該直線上。初中解析幾何知識告訴我們,判斷一個點在直線上,只需其與直線上任意兩點點斜率都相同即可。實際操作當中,往往會先根據已知的兩點算出直線的表達式(點斜式、截距式等等),然后通過向量計算即可方便地判斷p3是否在該直線上。 

生產實踐中的數據往往會有一定的偏差。例如我們知道兩個變量X與Y之間呈線性關系,Y=aX+b,我們想確定參數a與b的具體值。通過實驗,可以得到一組X與Y的測試值。雖然理論上兩個未知數的方程只需要兩組值即可確認,但由於系統誤差的原因,任意取兩點算出的a與b的值都不盡相同。我們希望的是,最后計算得出的理論模型與測試值的誤差最小。大學的高等數學課程中,詳細闡述了最小二乘法的思想。通過計算最小均方差關於參數a、b的偏導數為零時的值。事實上,在很多情況下,最小二乘法都是線性回歸的代名詞。 

遺憾的是,最小二乘法只適合與誤差較小的情況。試想一下這種情況,假使需要從一個噪音較大的數據集中提取模型(比方說只有20%的數據時符合模型的)時,最小二乘法就顯得力不從心了。例如下圖,肉眼可以很輕易地看出一條直線(模式),但算法卻找錯了。 

RANSAC算法詳解

RANSAC算法的輸入是一組觀測數據(往往含有較大的噪聲或無效點),一個用於解釋觀測數據的參數化模型以及一些可信的參數。RANSAC通過反復選擇數據中的一組隨機子集來達成目標。被選取的子集被假設為局內點,並用下述方法進行驗證: 

  • 有一個模型適應於假設的局內點,即所有的未知參數都能從假設的局內點計算得出。
  • 用1中得到的模型去測試所有的其它數據,如果某個點適用於估計的模型,認為它也是局內點。
  • 如果有足夠多的點被歸類為假設的局內點,那么估計的模型就足夠合理。
  • 然后,用所有假設的局內點去重新估計模型(譬如使用最小二乘法),因為它僅僅被初始的假設局內點估計過。
  • 最后,通過估計局內點與模型的錯誤率來評估模型。
  • 上述過程被重復執行固定的次數,每次產生的模型要么因為局內點太少而被舍棄,要么因為比現有的模型更好而被選用。


整個過程可參考下圖: 

RANSAC算法詳解

關於算法的源代碼,Ziv Yaniv曾經寫一個不錯的C++版本,我在關鍵處增補了注釋: 
C代碼   收藏代碼
  1. #include <math.h>  
  2. #include "LineParamEstimator.h"  
  3.   
  4. LineParamEstimator::LineParamEstimator(double delta) : m_deltaSquared(delta*delta) {}  
  5.   
  6.   
  7. void LineParamEstimator::estimate(std::vector<Point2D *> &data,   
  8.                                                                     std::vector<double> &parameters)  
  9. {  
  10.     parameters.clear();  
  11.     if(data.size()<2)  
  12.         return;  
  13.     double nx = data[1]->y - data[0]->y;  
  14.     double ny = data[0]->x - data[1]->x;// 原始直線的斜率為K,則法線的斜率為-1/k  
  15.     double norm = sqrt(nx*nx + ny*ny);  
  16.       
  17.     parameters.push_back(nx/norm);  
  18.     parameters.push_back(ny/norm);  
  19.     parameters.push_back(data[0]->x);  
  20.     parameters.push_back(data[0]->y);          
  21. }  
  22.   
  23.   
  24. void LineParamEstimator::leastSquaresEstimate(std::vector<Point2D *> &data,   
  25.                                                                                             std::vector<double> &parameters)  
  26. {  
  27.     double meanX, meanY, nx, ny, norm;  
  28.     double covMat11, covMat12, covMat21, covMat22; // The entries of the symmetric covarinace matrix  
  29.     int i, dataSize = data.size();  
  30.   
  31.     parameters.clear();  
  32.     if(data.size()<2)  
  33.         return;  
  34.   
  35.     meanX = meanY = 0.0;  
  36.     covMat11 = covMat12 = covMat21 = covMat22 = 0;  
  37.     for(i=0; i<dataSize; i++) {  
  38.         meanX +=data[i]->x;  
  39.         meanY +=data[i]->y;  
  40.   
  41.         covMat11    +=data[i]->x * data[i]->x;  
  42.         covMat12    +=data[i]->x * data[i]->y;  
  43.         covMat22    +=data[i]->y * data[i]->y;  
  44.     }  
  45.   
  46.     meanX/=dataSize;  
  47.     meanY/=dataSize;  
  48.   
  49.     covMat11 -= dataSize*meanX*meanX;  
  50.         covMat12 -= dataSize*meanX*meanY;  
  51.     covMat22 -= dataSize*meanY*meanY;  
  52.     covMat21 = covMat12;  
  53.   
  54.     if(covMat11<1e-12) {  
  55.         nx = 1.0;  
  56.             ny = 0.0;  
  57.     }  
  58.     else {      //lamda1 is the largest eigen-value of the covariance matrix   
  59.                //and is used to compute the eigne-vector corresponding to the smallest  
  60.                //eigenvalue, which isn't computed explicitly.  
  61.         double lamda1 = (covMat11 + covMat22 + sqrt((covMat11-covMat22)*(covMat11-covMat22) + 4*covMat12*covMat12)) / 2.0;  
  62.         nx = -covMat12;  
  63.         ny = lamda1 - covMat22;  
  64.         norm = sqrt(nx*nx + ny*ny);  
  65.         nx/=norm;  
  66.         ny/=norm;  
  67.     }  
  68.     parameters.push_back(nx);  
  69.     parameters.push_back(ny);  
  70.     parameters.push_back(meanX);  
  71.     parameters.push_back(meanY);  
  72. }  
  73.   
  74.   
  75. bool LineParamEstimator::agree(std::vector<double> &parameters, Point2D &data)  
  76. {  
  77.     double signedDistance = parameters[0]*(data.x-parameters[2]) + parameters[1]*(data.y-parameters[3]);   
  78.     return ((signedDistance*signedDistance) < m_deltaSquared);  
  79. }  


RANSAC尋找匹配的代碼如下: 
C代碼   收藏代碼
  1.   
  2. template<class T, class S>  
  3. double Ransac<T,S>::compute(std::vector<S> &parameters,   
  4.                                                       ParameterEsitmator<T,S> *paramEstimator ,   
  5.                                                     std::vector<T> &data,   
  6.                                                     int numForEstimate)  
  7. {  
  8.     std::vector<T *> leastSquaresEstimateData;  
  9.     int numDataObjects = data.size();  
  10.     int numVotesForBest = -1;  
  11.     int *arr = new int[numForEstimate];// numForEstimate表示擬合模型所需要的最少點數,對本例的直線來說,該值為2  
  12.     short *curVotes = new short[numDataObjects];  //one if data[i] agrees with the current model, otherwise zero  
  13.     short *bestVotes = new short[numDataObjects];  //one if data[i] agrees with the best model, otherwise zero  
  14.       
  15.   
  16.               //there are less data objects than the minimum required for an exact fit  
  17.     if(numDataObjects < numForEstimate)   
  18.         return 0;  
  19.         // 計算所有可能的直線,尋找其中誤差最小的解。對於100點的直線擬合來說,大約需要100*99*0.5=4950次運算,復雜度無疑是龐大的。一般采用隨機選取子集的方式。  
  20.     computeAllChoices(paramEstimator,data,numForEstimate,  
  21.                                         bestVotes, curVotes, numVotesForBest, 0, data.size(), numForEstimate, 0, arr);  
  22.   
  23.        //compute the least squares estimate using the largest sub set  
  24.     for(int j=0; j<numDataObjects; j++) {  
  25.         if(bestVotes[j])  
  26.             leastSquaresEstimateData.push_back(&(data[j]));  
  27.     }  
  28.         // 對局內點再次用最小二乘法擬合出模型  
  29.     paramEstimator->leastSquaresEstimate(leastSquaresEstimateData,parameters);  
  30.   
  31.     delete [] arr;  
  32.     delete [] bestVotes;  
  33.     delete [] curVotes;   
  34.   
  35.     return (double)leastSquaresEstimateData.size()/(double)numDataObjects;  
  36. }  


在模型確定以及最大迭代次數允許的情況下,RANSAC總是能找到最優解。經過我的實驗,對於包含80%誤差的數據集,RANSAC的效果遠優於直接的最小二乘法。 

RANSAC可以用於哪些場景呢?最著名的莫過於圖片的拼接技術。優於鏡頭的限制,往往需要多張照片才能拍下那種巨幅的風景。在多幅圖像合成時,事先會在待合成的圖片中提取一些關鍵的特征點。計算機視覺的研究表明,不同視角下物體往往可以通過一個透視矩(3X3或2X2)陣的變換而得到。RANSAC被用於擬合這個模型的參數(矩陣各行列的值),由此便可識別出不同照片中的同一物體。可參考下圖: 

RANSAC算法詳解

RANSAC算法詳解

RANSAC算法詳解

另外,RANSAC還可以用於圖像搜索時的糾錯與物體識別定位。下圖中,有幾條直線是SIFT匹配算法的誤判,RANSAC有效地將其識別,並將正確的模型(書本)用線框標注出來: 

RANSAC算法詳解  

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM