1. epoch
在代碼中經常見到n_epochs這個參數,該參數到底是什么意思呢?答案如下:
在一個epoch中,所有訓練集數據使用一次
one epoch = one forward pass and one backward pass of all the training examples
2. batch_size
一般情況下,一個訓練集中會有大量的samples,為了提高訓練速度,會將整個training set分為n_batch組,每組包含batch_size個samples
即:整個數據集samples個數 = batch_size * n_batch
batch size = the number of training examples in one forward/backward pass. The higher the batch size, the more memory space you'll need.
3. iterations
看到iteration和epoch這兩個參數,很是困惑,總是分不清楚它們之間到底什么區別,這兩個參數是完全不同的概念
每次iteration進行的工作為:利用某個batch的samples對model進行訓練
number of iterations = number of passes, each pass using [batch size] number of examples. To be clear, one pass = one forward pass + one backward pass (we do not count the forward pass and backward pass as two different passes)
具體地
# epoch個數 n_epochs = 100 # 樣本總個數 numSamples = 100 000 # 要將樣本分割為n_batch組 n_batch = 10 # 每個batch包含的samples batch_size = numSamples / n_batch # 尅是進行訓練 iterations = 0 for i in range(n_epochs ): for j in range (n_batch): #利用第j組batch進行training train (j) # iterations個數加1 iterations = iterations +1
可見:iterations = epoch * n_batch
即,每個epoch進行n_batch次training,每次training,利用batch_size個samples