TaskScheduler的啟動


《深入理解Spark:核心思想與源碼分析》一書前言的內容請看鏈接《深入理解SPARK:核心思想與源碼分析》一書正式出版上市

《深入理解Spark:核心思想與源碼分析》一書第一章的內容請看鏈接《第1章 環境准備》

《深入理解Spark:核心思想與源碼分析》一書第二章的內容請看鏈接《第2章 SPARK設計理念與基本架構》

由於本書的第3章內容較多,所以打算分別開辟四篇隨筆分別展現。

《深入理解Spark:核心思想與源碼分析》一書第三章第一部分的內容請看鏈接《深入理解Spark:核心思想與源碼分析》——SparkContext的初始化(伯篇)》

《深入理解Spark:核心思想與源碼分析》一書第三章第二部分的內容請看鏈接《深入理解Spark:核心思想與源碼分析》——SparkContext的初始化(仲篇)》

本文展現第3章第三部分的內容:

3.8 TaskScheduler的啟動

  3.7節介紹了任務調度器TaskScheduler的創建,要想TaskScheduler發揮作用,必須要啟動它,代碼如下。

taskScheduler.start()

TaskScheduler在啟動的時候,實際調用了backend的start方法。

  override def start() {

    backend.start()

  }

以LocalBackend為例,啟動LocalBackend時向actorSystem注冊了LocalActor,見代碼清單3-30所示(在《深入理解Spark:核心思想與源碼分析》——SparkContext的初始化(中)》一文)。

3.8.1 創建LocalActor

  創建LocalActor的過程主要是構建本地的Executor,見代碼清單3-36。

代碼清單3-36         LocalActor的實現

private[spark] class LocalActor(scheduler: TaskSchedulerImpl, executorBackend: LocalBackend,

  private val totalCores: Int) extends Actor with ActorLogReceive with Logging {

  import context.dispatcher   // to use Akka's scheduler.scheduleOnce()

  private var freeCores = totalCores

  private val localExecutorId = SparkContext.DRIVER_IDENTIFIER

  private val localExecutorHostname = "localhost"

 

  val executor = new Executor(

    localExecutorId, localExecutorHostname, scheduler.conf.getAll, totalCores, isLocal = true)

 

  override def receiveWithLogging = {

    case ReviveOffers =>

      reviveOffers()

 

    case StatusUpdate(taskId, state, serializedData) =>

      scheduler.statusUpdate(taskId, state, serializedData)

      if (TaskState.isFinished(state)) {

        freeCores += scheduler.CPUS_PER_TASK

        reviveOffers()

      }

 

    case KillTask(taskId, interruptThread) =>

      executor.killTask(taskId, interruptThread)

 

    case StopExecutor =>

      executor.stop()

  }

 

}

Executor的構建,見代碼清單3-37,主要包括以下步驟:

1) 創建並注冊ExecutorSource。ExecutorSource是做什么的呢?筆者將在3.10.2節詳細介紹。

2) 獲取SparkEnv。如果是非local模式,Worker上的CoarseGrainedExecutorBackend向Driver上的CoarseGrainedExecutorBackend注冊Executor時,則需要新建SparkEnv。可以修改屬性spark.executor.port(默認為0,表示隨機生成)來配置Executor中的ActorSystem的端口號。

3) 創建並注冊ExecutorActor。ExecutorActor負責接受發送給Executor的消息。

4) urlClassLoader的創建。為什么需要創建這個ClassLoader?在非local模式中,Driver或者Worker上都會有多個Executor,每個Executor都設置自身的urlClassLoader,用於加載任務上傳的jar包中的類,有效對任務的類加載環境進行隔離。

5) 創建Executor執行TaskRunner任務(TaskRunner將在5.5節介紹)的線程池。此線程池是通過調用Utils.newDaemonCachedThreadPool創建的,具體實現請參閱附錄A。

6) 啟動Executor的心跳線程。此線程用於向Driver發送心跳。

此外,還包括Akka發送消息的幀大小(10485760字節)、結果總大小的字節限制(1073741824字節)、正在運行的task的列表、設置serializer的默認ClassLoader為創建的ClassLoader等。

代碼清單3-37         Executor的構建

  val executorSource = new ExecutorSource(this, executorId)

  private val env = {

    if (!isLocal) {

      val port = conf.getInt("spark.executor.port", 0)

      val _env = SparkEnv.createExecutorEnv(

        conf, executorId, executorHostname, port, numCores, isLocal, actorSystem)

      SparkEnv.set(_env)

      _env.metricsSystem.registerSource(executorSource)

      _env.blockManager.initialize(conf.getAppId)

      _env

    } else {

      SparkEnv.get

    }

  }

 

  private val executorActor = env.actorSystem.actorOf(

    Props(new ExecutorActor(executorId)), "ExecutorActor")

 

  private val urlClassLoader = createClassLoader()

  private val replClassLoader = addReplClassLoaderIfNeeded(urlClassLoader)

  env.serializer.setDefaultClassLoader(urlClassLoader)

 

  private val akkaFrameSize = AkkaUtils.maxFrameSizeBytes(conf)

  private val maxResultSize = Utils.getMaxResultSize(conf)

 

  val threadPool = Utils.newDaemonCachedThreadPool("Executor task launch worker")

  private val runningTasks = new ConcurrentHashMap[Long, TaskRunner]

  startDriverHeartbeater()

3.8.2 ExecutorSource的創建與注冊

  ExecutorSource用於測量系統。通過metricRegistry的register方法注冊計量,這些計量信息包括threadpool.activeTasks、threadpool.completeTasks、threadpool.currentPool_size、threadpool.maxPool_size、filesystem.hdfs.write_bytes、filesystem.hdfs.read_ops、filesystem.file.write_bytes、filesystem.hdfs.largeRead_ops、filesystem.hdfs.write_ops等,ExecutorSource的實現見代碼清單3-38。Metric接口的具體實現,參考附錄D。

代碼清單3-38         ExecutorSource的實現

private[spark] class ExecutorSource(val executor: Executor, executorId: String) extends Source {

  private def fileStats(scheme: String) : Option[FileSystem.Statistics] =

    FileSystem.getAllStatistics().filter(s => s.getScheme.equals(scheme)).headOption

 

  private def registerFileSystemStat[T](

        scheme: String, name: String, f: FileSystem.Statistics => T, defaultValue: T) = {

    metricRegistry.register(MetricRegistry.name("filesystem", scheme, name), new Gauge[T] {

      override def getValue: T = fileStats(scheme).map(f).getOrElse(defaultValue)

    })

  }

  override val metricRegistry = new MetricRegistry()

  override val sourceName = "executor"

 

metricRegistry.register(MetricRegistry.name("threadpool", "activeTasks"), new Gauge[Int] {

    override def getValue: Int = executor.threadPool.getActiveCount()

  })

 metricRegistry.register(MetricRegistry.name("threadpool", "completeTasks"), new Gauge[Long] {

    override def getValue: Long = executor.threadPool.getCompletedTaskCount()

  })

  metricRegistry.register(MetricRegistry.name("threadpool", "currentPool_size"), new Gauge[Int] {

    override def getValue: Int = executor.threadPool.getPoolSize()

  })

  metricRegistry.register(MetricRegistry.name("threadpool", "maxPool_size"), new Gauge[Int] {

    override def getValue: Int = executor.threadPool.getMaximumPoolSize()

  })

 

  // Gauge for file system stats of this executor

  for (scheme <- Array("hdfs", "file")) {

    registerFileSystemStat(scheme, "read_bytes", _.getBytesRead(), 0L)

    registerFileSystemStat(scheme, "write_bytes", _.getBytesWritten(), 0L)

    registerFileSystemStat(scheme, "read_ops", _.getReadOps(), 0)

    registerFileSystemStat(scheme, "largeRead_ops", _.getLargeReadOps(), 0)

    registerFileSystemStat(scheme, "write_ops", _.getWriteOps(), 0)

  }

} 

創建完ExecutorSource后,調用MetricsSystem的registerSource方法將ExecutorSource注冊到MetricsSystem。registerSource方法使用MetricRegistry的register方法,將Source注冊到MetricRegistry,見代碼清單3-39。關於MetricRegistry,具體參閱附錄D。

代碼清單3-39         MetricsSystem注冊Source的實現

  def registerSource(source: Source) {

    sources += source

    try {

      val regName = buildRegistryName(source)

      registry.register(regName, source.metricRegistry)

    } catch {

      case e: IllegalArgumentException => logInfo("Metrics already registered", e)

    }

  } 

3.8.3 ExecutorActor的構建與注冊

  ExecutorActor很簡單,當接收到SparkUI發來的消息時,將所有線程的棧信息發送回去,代碼實現如下。

  override def receiveWithLogging = {

    case TriggerThreadDump =>

      sender ! Utils.getThreadDump()

  }

3.8.4 Spark自身ClassLoader的創建

  獲取要創建的ClassLoader的父加載器currentLoader,然后根據currentJars生成URL數組,spark.files.userClassPathFirst屬性指定加載類時是否先從用戶的classpath下加載,最后創建ExecutorURLClassLoader或者ChildExecutorURLClassLoader,見代碼清單3-40。

代碼清單3-40         Spark自身ClassLoader的創建

  private def createClassLoader(): MutableURLClassLoader = {

    val currentLoader = Utils.getContextOrSparkClassLoader

 

    val urls = currentJars.keySet.map { uri =>

      new File(uri.split("/").last).toURI.toURL

    }.toArray

    val userClassPathFirst = conf.getBoolean("spark.files.userClassPathFirst", false)

    userClassPathFirst match {

      case true => new ChildExecutorURLClassLoader(urls, currentLoader)

      case false => new ExecutorURLClassLoader(urls, currentLoader)

    }

  } 

Utils.getContextOrSparkClassLoader的實現見附錄A。ExecutorURLClassLoader或者ChildExecutorURLClassLoader實際上都繼承了URLClassLoader,見代碼清單3-41。 

代碼清單3-41         ChildExecutorURLClassLoader與ExecutorURLClassLoader的實現

private[spark] class ChildExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader)

  extends MutableURLClassLoader {

 

  private object userClassLoader extends URLClassLoader(urls, null){

    override def addURL(url: URL) {

      super.addURL(url)

    }

    override def findClass(name: String): Class[_] = {

      super.findClass(name)

    }

  }

 

  private val parentClassLoader = new ParentClassLoader(parent)

 

  override def findClass(name: String): Class[_] = {

    try {

      userClassLoader.findClass(name)

    } catch {

      case e: ClassNotFoundException => {

        parentClassLoader.loadClass(name)

      }

    }

  }

 

  def addURL(url: URL) {

    userClassLoader.addURL(url)

  }

 

  def getURLs() = {

    userClassLoader.getURLs()

  }

}

 

private[spark] class ExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader)

  extends URLClassLoader(urls, parent) with MutableURLClassLoader {

 

  override def addURL(url: URL) {

    super.addURL(url)

  }

}

如果需要REPL交互,還會調用addReplClassLoaderIfNeeded創建replClassLoader,見代碼清單3-42。

代碼清單3-42         addReplClassLoaderIfNeeded的實現

  private def addReplClassLoaderIfNeeded(parent: ClassLoader): ClassLoader = {

    val classUri = conf.get("spark.repl.class.uri", null)

    if (classUri != null) {

      logInfo("Using REPL class URI: " + classUri)

      val userClassPathFirst: java.lang.Boolean =

        conf.getBoolean("spark.files.userClassPathFirst", false)

      try {

        val klass = Class.forName("org.apache.spark.repl.ExecutorClassLoader")

          .asInstanceOf[Class[_ <: ClassLoader]]

        val constructor = klass.getConstructor(classOf[SparkConf], classOf[String],

          classOf[ClassLoader], classOf[Boolean])

        constructor.newInstance(conf, classUri, parent, userClassPathFirst)

      } catch {

        case _: ClassNotFoundException =>

          logError("Could not find org.apache.spark.repl.ExecutorClassLoader on classpath!")

          System.exit(1)

          null

      }

    } else {

      parent

    }

  }

3.8.5 啟動Executor的心跳線程

  Executor的心跳由startDriverHeartbeater啟動,見代碼清單3-43。Executor心跳線程的間隔由屬性spark.executor.heartbeatInterval配置,默認是10000毫秒。此外,超時時間是30秒,超時重試次數是3次,重試間隔是3000毫秒,使用actorSystem.actorSelection (url)方法查找到匹配的Actor引用, url是akka.tcp://sparkDriver@ $driverHost:$driverPort/user/HeartbeatReceiver,最終創建一個運行過程中,每次會休眠10000到20000毫秒的線程。此線程從runningTasks獲取最新的有關Task的測量信息,將其與executorId、blockManagerId封裝為Heartbeat消息,向HeartbeatReceiver發送Heartbeat消息。

代碼清單3-43         啟動Executor的心跳線程

  def startDriverHeartbeater() {

    val interval = conf.getInt("spark.executor.heartbeatInterval", 10000)

    val timeout = AkkaUtils.lookupTimeout(conf)

    val retryAttempts = AkkaUtils.numRetries(conf)

    val retryIntervalMs = AkkaUtils.retryWaitMs(conf)

    val heartbeatReceiverRef = AkkaUtils.makeDriverRef("HeartbeatReceiver", conf,env.actorSystem)

    val t = new Thread() {

      override def run() {

        // Sleep a random interval so the heartbeats don't end up in sync

        Thread.sleep(interval + (math.random * interval).asInstanceOf[Int])

        while (!isStopped) {

          val tasksMetrics = new ArrayBuffer[(Long, TaskMetrics)]()

          val curGCTime = gcTime

          for (taskRunner <- runningTasks.values()) {

            if (!taskRunner.attemptedTask.isEmpty) {

              Option(taskRunner.task).flatMap(_.metrics).foreach { metrics =>

                metrics.updateShuffleReadMetrics

                metrics.jvmGCTime = curGCTime - taskRunner.startGCTime

                if (isLocal) {

                  val copiedMetrics = Utils.deserialize[TaskMetrics](Utils.serialize(metrics))

                  tasksMetrics += ((taskRunner.taskId, copiedMetrics))

                } else {

                  // It will be copied by serialization

                  tasksMetrics += ((taskRunner.taskId, metrics))

                }

              }

            }

          }

          val message = Heartbeat(executorId, tasksMetrics.toArray, env.blockManager.blockManagerId)

          try {

            val response = AkkaUtils.askWithReply[HeartbeatResponse](message, heartbeatReceiverRef,

              retryAttempts, retryIntervalMs, timeout)

            if (response.reregisterBlockManager) {

              logWarning("Told to re-register on heartbeat")

              env.blockManager.reregister()

            }

          } catch {

            case NonFatal(t) => logWarning("Issue communicating with driver in heartbeater", t)

          }

          Thread.sleep(interval)

        }

      }

    }

    t.setDaemon(true)

    t.setName("Driver Heartbeater")

    t.start()

  }

這個心跳線程的作用是什么呢?其作用有兩個:

q  更新正在處理的任務的測量信息;

q  通知BlockManagerMaster,此Executor上的BlockManager依然活着。

下面對心跳線程的實現詳細分析下,讀者可以自行選擇是否需要閱讀。

  初始化TaskSchedulerImpl后會創建心跳接收器HeartbeatReceiver。HeartbeatReceiver接受所有分配給當前Driver Application的Executor的心跳,並將Task、Task計量信息、心跳等交給TaskSchedulerImpl和DAGScheduler作進一步處理。創建心跳接收器的代碼如下。

  private val heartbeatReceiver = env.actorSystem.actorOf(

    Props(new HeartbeatReceiver(taskScheduler)), "HeartbeatReceiver")

HeartbeatReceiver在收到心跳消息后,會調用TaskScheduler的executorHeartbeatReceived方法,代碼如下。

  override def receiveWithLogging = {

    case Heartbeat(executorId, taskMetrics, blockManagerId) =>

      val response = HeartbeatResponse(

        !scheduler.executorHeartbeatReceived(executorId, taskMetrics, blockManagerId))

      sender ! response

  }

executorHeartbeatReceived的實現代碼如下。

    val metricsWithStageIds: Array[(Long, Int, Int, TaskMetrics)] = synchronized {

      taskMetrics.flatMap { case (id, metrics) =>

        taskIdToTaskSetId.get(id)

          .flatMap(activeTaskSets.get)

          .map(taskSetMgr => (id, taskSetMgr.stageId, taskSetMgr.taskSet.attempt, metrics))

      }

    }

    dagScheduler.executorHeartbeatReceived(execId, metricsWithStageIds, blockManagerId)

這段程序通過遍歷taskMetrics,依據taskIdToTaskSetId和activeTaskSets找到TaskSetManager。然后將taskId、TaskSetManager.stageId、TaskSetManager .taskSet.attempt、TaskMetrics封裝到Array[(Long, Int, Int, TaskMetrics)]的數組metricsWithStageIds中。最后調用了dagScheduler的executorHeartbeatReceived方法,其實現如下。

    listenerBus.post(SparkListenerExecutorMetricsUpdate(execId, taskMetrics))

    implicit val timeout = Timeout(600 seconds)

 

    Await.result(

      blockManagerMaster.driverActor ? BlockManagerHeartbeat(blockManagerId),

      timeout.duration).asInstanceOf[Boolean]

dagScheduler將executorId、metricsWithStageIds封裝為SparkListenerExecutorMetricsUpdate事件,並post到listenerBus中,此事件用於更新Stage的各種測量數據。最后給BlockManagerMaster持有的BlockManagerMasterActor發送BlockManagerHeartbeat消息。BlockManagerMasterActor在收到消息后會匹配執行heartbeatReceived方法(會在4.3.1節介紹)。heartbeatReceived最終更新BlockManagerMaster對BlockManager最后可見時間(即更新BlockManagerId對應的BlockManagerInfo的_lastSeenMs,見代碼清單3-44)。

代碼清單3-44         BlockManagerMasterActor的心跳處理

private def heartbeatReceived(blockManagerId: BlockManagerId): Boolean = {

    if (!blockManagerInfo.contains(blockManagerId)) {

      blockManagerId.isDriver && !isLocal

    } else {

      blockManagerInfo(blockManagerId).updateLastSeenMs()

      true

    }

  }

local模式下Executor的心跳通信過程,可以用圖3-3來表示。

圖3-3       Executor的心跳通信過程

 

注意:在非local模式中Executor發送心跳的過程是一樣的,主要的區別是Executor進程與Driver不在同一個進程,甚至不在同一個節點上。

 

接下來會初始化塊管理器BlockManager,代碼如下。

env.blockManager.initialize(applicationId)

具體的初始化過程,請參閱第4章。

 

未完待續。。。

 

后記:自己犧牲了7個月的周末和下班空閑時間,通過研究Spark源碼和原理,總結整理的《深入理解Spark:核心思想與源碼分析》一書現在已經正式出版上市,目前亞馬遜、京東、當當、天貓等網站均有銷售,歡迎感興趣的同學購買。我開始研究源碼時的Spark版本是1.2.0,經過7個多月的研究和出版社近4個月的流程,Spark自身的版本迭代也很快,如今最新已經是1.6.0。目前市面上另外2本源碼研究的Spark書籍的版本分別是0.9.0版本和1.2.0版本,看來這些書的作者都與我一樣,遇到了這種問題。由於研究和出版都需要時間,所以不能及時跟上Spark的腳步,還請大家見諒。但是Spark核心部分的變化相對還是很少的,如果對版本不是過於追求,依然可以選擇本書。

 

京東(現有滿100減30活動):http://item.jd.com/11846120.html 

當當:http://product.dangdang.com/23838168.html 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM