《深入理解Spark:核心思想與源碼分析》一書前言的內容請看鏈接《深入理解SPARK:核心思想與源碼分析》一書正式出版上市
《深入理解Spark:核心思想與源碼分析》一書第一章的內容請看鏈接《第1章 環境准備》
《深入理解Spark:核心思想與源碼分析》一書第二章的內容請看鏈接《第2章 SPARK設計理念與基本架構》
由於本書的第3章內容較多,所以打算分別開辟四篇隨筆分別展現。
《深入理解Spark:核心思想與源碼分析》一書第三章第一部分的內容請看鏈接《深入理解Spark:核心思想與源碼分析》——SparkContext的初始化(伯篇)》
《深入理解Spark:核心思想與源碼分析》一書第三章第二部分的內容請看鏈接《深入理解Spark:核心思想與源碼分析》——SparkContext的初始化(仲篇)》
本文展現第3章第三部分的內容:
3.8 TaskScheduler的啟動
3.7節介紹了任務調度器TaskScheduler的創建,要想TaskScheduler發揮作用,必須要啟動它,代碼如下。
taskScheduler.start()
TaskScheduler在啟動的時候,實際調用了backend的start方法。
override def start() {
backend.start()
}
以LocalBackend為例,啟動LocalBackend時向actorSystem注冊了LocalActor,見代碼清單3-30所示(在《深入理解Spark:核心思想與源碼分析》——SparkContext的初始化(中)》一文)。
3.8.1 創建LocalActor
創建LocalActor的過程主要是構建本地的Executor,見代碼清單3-36。
代碼清單3-36 LocalActor的實現
private[spark] class LocalActor(scheduler: TaskSchedulerImpl, executorBackend: LocalBackend,
private val totalCores: Int) extends Actor with ActorLogReceive with Logging {
import context.dispatcher // to use Akka's scheduler.scheduleOnce()
private var freeCores = totalCores
private val localExecutorId = SparkContext.DRIVER_IDENTIFIER
private val localExecutorHostname = "localhost"
val executor = new Executor(
localExecutorId, localExecutorHostname, scheduler.conf.getAll, totalCores, isLocal = true)
override def receiveWithLogging = {
case ReviveOffers =>
reviveOffers()
case StatusUpdate(taskId, state, serializedData) =>
scheduler.statusUpdate(taskId, state, serializedData)
if (TaskState.isFinished(state)) {
freeCores += scheduler.CPUS_PER_TASK
reviveOffers()
}
case KillTask(taskId, interruptThread) =>
executor.killTask(taskId, interruptThread)
case StopExecutor =>
executor.stop()
}
}
Executor的構建,見代碼清單3-37,主要包括以下步驟:
1) 創建並注冊ExecutorSource。ExecutorSource是做什么的呢?筆者將在3.10.2節詳細介紹。
2) 獲取SparkEnv。如果是非local模式,Worker上的CoarseGrainedExecutorBackend向Driver上的CoarseGrainedExecutorBackend注冊Executor時,則需要新建SparkEnv。可以修改屬性spark.executor.port(默認為0,表示隨機生成)來配置Executor中的ActorSystem的端口號。
3) 創建並注冊ExecutorActor。ExecutorActor負責接受發送給Executor的消息。
4) urlClassLoader的創建。為什么需要創建這個ClassLoader?在非local模式中,Driver或者Worker上都會有多個Executor,每個Executor都設置自身的urlClassLoader,用於加載任務上傳的jar包中的類,有效對任務的類加載環境進行隔離。
5) 創建Executor執行TaskRunner任務(TaskRunner將在5.5節介紹)的線程池。此線程池是通過調用Utils.newDaemonCachedThreadPool創建的,具體實現請參閱附錄A。
6) 啟動Executor的心跳線程。此線程用於向Driver發送心跳。
此外,還包括Akka發送消息的幀大小(10485760字節)、結果總大小的字節限制(1073741824字節)、正在運行的task的列表、設置serializer的默認ClassLoader為創建的ClassLoader等。
代碼清單3-37 Executor的構建
val executorSource = new ExecutorSource(this, executorId)
private val env = {
if (!isLocal) {
val port = conf.getInt("spark.executor.port", 0)
val _env = SparkEnv.createExecutorEnv(
conf, executorId, executorHostname, port, numCores, isLocal, actorSystem)
SparkEnv.set(_env)
_env.metricsSystem.registerSource(executorSource)
_env.blockManager.initialize(conf.getAppId)
_env
} else {
SparkEnv.get
}
}
private val executorActor = env.actorSystem.actorOf(
Props(new ExecutorActor(executorId)), "ExecutorActor")
private val urlClassLoader = createClassLoader()
private val replClassLoader = addReplClassLoaderIfNeeded(urlClassLoader)
env.serializer.setDefaultClassLoader(urlClassLoader)
private val akkaFrameSize = AkkaUtils.maxFrameSizeBytes(conf)
private val maxResultSize = Utils.getMaxResultSize(conf)
val threadPool = Utils.newDaemonCachedThreadPool("Executor task launch worker")
private val runningTasks = new ConcurrentHashMap[Long, TaskRunner]
startDriverHeartbeater()
3.8.2 ExecutorSource的創建與注冊
ExecutorSource用於測量系統。通過metricRegistry的register方法注冊計量,這些計量信息包括threadpool.activeTasks、threadpool.completeTasks、threadpool.currentPool_size、threadpool.maxPool_size、filesystem.hdfs.write_bytes、filesystem.hdfs.read_ops、filesystem.file.write_bytes、filesystem.hdfs.largeRead_ops、filesystem.hdfs.write_ops等,ExecutorSource的實現見代碼清單3-38。Metric接口的具體實現,參考附錄D。
代碼清單3-38 ExecutorSource的實現
private[spark] class ExecutorSource(val executor: Executor, executorId: String) extends Source {
private def fileStats(scheme: String) : Option[FileSystem.Statistics] =
FileSystem.getAllStatistics().filter(s => s.getScheme.equals(scheme)).headOption
private def registerFileSystemStat[T](
scheme: String, name: String, f: FileSystem.Statistics => T, defaultValue: T) = {
metricRegistry.register(MetricRegistry.name("filesystem", scheme, name), new Gauge[T] {
override def getValue: T = fileStats(scheme).map(f).getOrElse(defaultValue)
})
}
override val metricRegistry = new MetricRegistry()
override val sourceName = "executor"
metricRegistry.register(MetricRegistry.name("threadpool", "activeTasks"), new Gauge[Int] {
override def getValue: Int = executor.threadPool.getActiveCount()
})
metricRegistry.register(MetricRegistry.name("threadpool", "completeTasks"), new Gauge[Long] {
override def getValue: Long = executor.threadPool.getCompletedTaskCount()
})
metricRegistry.register(MetricRegistry.name("threadpool", "currentPool_size"), new Gauge[Int] {
override def getValue: Int = executor.threadPool.getPoolSize()
})
metricRegistry.register(MetricRegistry.name("threadpool", "maxPool_size"), new Gauge[Int] {
override def getValue: Int = executor.threadPool.getMaximumPoolSize()
})
// Gauge for file system stats of this executor
for (scheme <- Array("hdfs", "file")) {
registerFileSystemStat(scheme, "read_bytes", _.getBytesRead(), 0L)
registerFileSystemStat(scheme, "write_bytes", _.getBytesWritten(), 0L)
registerFileSystemStat(scheme, "read_ops", _.getReadOps(), 0)
registerFileSystemStat(scheme, "largeRead_ops", _.getLargeReadOps(), 0)
registerFileSystemStat(scheme, "write_ops", _.getWriteOps(), 0)
}
}
創建完ExecutorSource后,調用MetricsSystem的registerSource方法將ExecutorSource注冊到MetricsSystem。registerSource方法使用MetricRegistry的register方法,將Source注冊到MetricRegistry,見代碼清單3-39。關於MetricRegistry,具體參閱附錄D。
代碼清單3-39 MetricsSystem注冊Source的實現
def registerSource(source: Source) {
sources += source
try {
val regName = buildRegistryName(source)
registry.register(regName, source.metricRegistry)
} catch {
case e: IllegalArgumentException => logInfo("Metrics already registered", e)
}
}
3.8.3 ExecutorActor的構建與注冊
ExecutorActor很簡單,當接收到SparkUI發來的消息時,將所有線程的棧信息發送回去,代碼實現如下。
override def receiveWithLogging = {
case TriggerThreadDump =>
sender ! Utils.getThreadDump()
}
3.8.4 Spark自身ClassLoader的創建
獲取要創建的ClassLoader的父加載器currentLoader,然后根據currentJars生成URL數組,spark.files.userClassPathFirst屬性指定加載類時是否先從用戶的classpath下加載,最后創建ExecutorURLClassLoader或者ChildExecutorURLClassLoader,見代碼清單3-40。
代碼清單3-40 Spark自身ClassLoader的創建
private def createClassLoader(): MutableURLClassLoader = {
val currentLoader = Utils.getContextOrSparkClassLoader
val urls = currentJars.keySet.map { uri =>
new File(uri.split("/").last).toURI.toURL
}.toArray
val userClassPathFirst = conf.getBoolean("spark.files.userClassPathFirst", false)
userClassPathFirst match {
case true => new ChildExecutorURLClassLoader(urls, currentLoader)
case false => new ExecutorURLClassLoader(urls, currentLoader)
}
}
Utils.getContextOrSparkClassLoader的實現見附錄A。ExecutorURLClassLoader或者ChildExecutorURLClassLoader實際上都繼承了URLClassLoader,見代碼清單3-41。
代碼清單3-41 ChildExecutorURLClassLoader與ExecutorURLClassLoader的實現
private[spark] class ChildExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader)
extends MutableURLClassLoader {
private object userClassLoader extends URLClassLoader(urls, null){
override def addURL(url: URL) {
super.addURL(url)
}
override def findClass(name: String): Class[_] = {
super.findClass(name)
}
}
private val parentClassLoader = new ParentClassLoader(parent)
override def findClass(name: String): Class[_] = {
try {
userClassLoader.findClass(name)
} catch {
case e: ClassNotFoundException => {
parentClassLoader.loadClass(name)
}
}
}
def addURL(url: URL) {
userClassLoader.addURL(url)
}
def getURLs() = {
userClassLoader.getURLs()
}
}
private[spark] class ExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader)
extends URLClassLoader(urls, parent) with MutableURLClassLoader {
override def addURL(url: URL) {
super.addURL(url)
}
}
如果需要REPL交互,還會調用addReplClassLoaderIfNeeded創建replClassLoader,見代碼清單3-42。
代碼清單3-42 addReplClassLoaderIfNeeded的實現
private def addReplClassLoaderIfNeeded(parent: ClassLoader): ClassLoader = {
val classUri = conf.get("spark.repl.class.uri", null)
if (classUri != null) {
logInfo("Using REPL class URI: " + classUri)
val userClassPathFirst: java.lang.Boolean =
conf.getBoolean("spark.files.userClassPathFirst", false)
try {
val klass = Class.forName("org.apache.spark.repl.ExecutorClassLoader")
.asInstanceOf[Class[_ <: ClassLoader]]
val constructor = klass.getConstructor(classOf[SparkConf], classOf[String],
classOf[ClassLoader], classOf[Boolean])
constructor.newInstance(conf, classUri, parent, userClassPathFirst)
} catch {
case _: ClassNotFoundException =>
logError("Could not find org.apache.spark.repl.ExecutorClassLoader on classpath!")
System.exit(1)
null
}
} else {
parent
}
}
3.8.5 啟動Executor的心跳線程
Executor的心跳由startDriverHeartbeater啟動,見代碼清單3-43。Executor心跳線程的間隔由屬性spark.executor.heartbeatInterval配置,默認是10000毫秒。此外,超時時間是30秒,超時重試次數是3次,重試間隔是3000毫秒,使用actorSystem.actorSelection (url)方法查找到匹配的Actor引用, url是akka.tcp://sparkDriver@ $driverHost:$driverPort/user/HeartbeatReceiver,最終創建一個運行過程中,每次會休眠10000到20000毫秒的線程。此線程從runningTasks獲取最新的有關Task的測量信息,將其與executorId、blockManagerId封裝為Heartbeat消息,向HeartbeatReceiver發送Heartbeat消息。
代碼清單3-43 啟動Executor的心跳線程
def startDriverHeartbeater() {
val interval = conf.getInt("spark.executor.heartbeatInterval", 10000)
val timeout = AkkaUtils.lookupTimeout(conf)
val retryAttempts = AkkaUtils.numRetries(conf)
val retryIntervalMs = AkkaUtils.retryWaitMs(conf)
val heartbeatReceiverRef = AkkaUtils.makeDriverRef("HeartbeatReceiver", conf,env.actorSystem)
val t = new Thread() {
override def run() {
// Sleep a random interval so the heartbeats don't end up in sync
Thread.sleep(interval + (math.random * interval).asInstanceOf[Int])
while (!isStopped) {
val tasksMetrics = new ArrayBuffer[(Long, TaskMetrics)]()
val curGCTime = gcTime
for (taskRunner <- runningTasks.values()) {
if (!taskRunner.attemptedTask.isEmpty) {
Option(taskRunner.task).flatMap(_.metrics).foreach { metrics =>
metrics.updateShuffleReadMetrics
metrics.jvmGCTime = curGCTime - taskRunner.startGCTime
if (isLocal) {
val copiedMetrics = Utils.deserialize[TaskMetrics](Utils.serialize(metrics))
tasksMetrics += ((taskRunner.taskId, copiedMetrics))
} else {
// It will be copied by serialization
tasksMetrics += ((taskRunner.taskId, metrics))
}
}
}
}
val message = Heartbeat(executorId, tasksMetrics.toArray, env.blockManager.blockManagerId)
try {
val response = AkkaUtils.askWithReply[HeartbeatResponse](message, heartbeatReceiverRef,
retryAttempts, retryIntervalMs, timeout)
if (response.reregisterBlockManager) {
logWarning("Told to re-register on heartbeat")
env.blockManager.reregister()
}
} catch {
case NonFatal(t) => logWarning("Issue communicating with driver in heartbeater", t)
}
Thread.sleep(interval)
}
}
}
t.setDaemon(true)
t.setName("Driver Heartbeater")
t.start()
}
這個心跳線程的作用是什么呢?其作用有兩個:
q 更新正在處理的任務的測量信息;
q 通知BlockManagerMaster,此Executor上的BlockManager依然活着。
下面對心跳線程的實現詳細分析下,讀者可以自行選擇是否需要閱讀。
初始化TaskSchedulerImpl后會創建心跳接收器HeartbeatReceiver。HeartbeatReceiver接受所有分配給當前Driver Application的Executor的心跳,並將Task、Task計量信息、心跳等交給TaskSchedulerImpl和DAGScheduler作進一步處理。創建心跳接收器的代碼如下。
private val heartbeatReceiver = env.actorSystem.actorOf(
Props(new HeartbeatReceiver(taskScheduler)), "HeartbeatReceiver")
HeartbeatReceiver在收到心跳消息后,會調用TaskScheduler的executorHeartbeatReceived方法,代碼如下。
override def receiveWithLogging = {
case Heartbeat(executorId, taskMetrics, blockManagerId) =>
val response = HeartbeatResponse(
!scheduler.executorHeartbeatReceived(executorId, taskMetrics, blockManagerId))
sender ! response
}
executorHeartbeatReceived的實現代碼如下。
val metricsWithStageIds: Array[(Long, Int, Int, TaskMetrics)] = synchronized {
taskMetrics.flatMap { case (id, metrics) =>
taskIdToTaskSetId.get(id)
.flatMap(activeTaskSets.get)
.map(taskSetMgr => (id, taskSetMgr.stageId, taskSetMgr.taskSet.attempt, metrics))
}
}
dagScheduler.executorHeartbeatReceived(execId, metricsWithStageIds, blockManagerId)
這段程序通過遍歷taskMetrics,依據taskIdToTaskSetId和activeTaskSets找到TaskSetManager。然后將taskId、TaskSetManager.stageId、TaskSetManager .taskSet.attempt、TaskMetrics封裝到Array[(Long, Int, Int, TaskMetrics)]的數組metricsWithStageIds中。最后調用了dagScheduler的executorHeartbeatReceived方法,其實現如下。
listenerBus.post(SparkListenerExecutorMetricsUpdate(execId, taskMetrics))
implicit val timeout = Timeout(600 seconds)
Await.result(
blockManagerMaster.driverActor ? BlockManagerHeartbeat(blockManagerId),
timeout.duration).asInstanceOf[Boolean]
dagScheduler將executorId、metricsWithStageIds封裝為SparkListenerExecutorMetricsUpdate事件,並post到listenerBus中,此事件用於更新Stage的各種測量數據。最后給BlockManagerMaster持有的BlockManagerMasterActor發送BlockManagerHeartbeat消息。BlockManagerMasterActor在收到消息后會匹配執行heartbeatReceived方法(會在4.3.1節介紹)。heartbeatReceived最終更新BlockManagerMaster對BlockManager最后可見時間(即更新BlockManagerId對應的BlockManagerInfo的_lastSeenMs,見代碼清單3-44)。
代碼清單3-44 BlockManagerMasterActor的心跳處理
private def heartbeatReceived(blockManagerId: BlockManagerId): Boolean = {
if (!blockManagerInfo.contains(blockManagerId)) {
blockManagerId.isDriver && !isLocal
} else {
blockManagerInfo(blockManagerId).updateLastSeenMs()
true
}
}
local模式下Executor的心跳通信過程,可以用圖3-3來表示。

圖3-3 Executor的心跳通信過程
注意:在非local模式中Executor發送心跳的過程是一樣的,主要的區別是Executor進程與Driver不在同一個進程,甚至不在同一個節點上。
接下來會初始化塊管理器BlockManager,代碼如下。
env.blockManager.initialize(applicationId)
具體的初始化過程,請參閱第4章。
未完待續。。。
后記:自己犧牲了7個月的周末和下班空閑時間,通過研究Spark源碼和原理,總結整理的《深入理解Spark:核心思想與源碼分析》一書現在已經正式出版上市,目前亞馬遜、京東、當當、天貓等網站均有銷售,歡迎感興趣的同學購買。我開始研究源碼時的Spark版本是1.2.0,經過7個多月的研究和出版社近4個月的流程,Spark自身的版本迭代也很快,如今最新已經是1.6.0。目前市面上另外2本源碼研究的Spark書籍的版本分別是0.9.0版本和1.2.0版本,看來這些書的作者都與我一樣,遇到了這種問題。由於研究和出版都需要時間,所以不能及時跟上Spark的腳步,還請大家見諒。但是Spark核心部分的變化相對還是很少的,如果對版本不是過於追求,依然可以選擇本書。

京東(現有滿100減30活動):http://item.jd.com/11846120.html
