《深入理解Spark:核心思想與源碼分析》一書前言的內容請看鏈接《深入理解SPARK:核心思想與源碼分析》一書正式出版上市
《深入理解Spark:核心思想與源碼分析》一書第一章的內容請看鏈接《第1章 環境准備》
《深入理解Spark:核心思想與源碼分析》一書第二章的內容請看鏈接《第2章 SPARK設計理念與基本架構》
由於本書的第3章內容較多,所以打算分別開辟四篇隨筆分別展現。
《深入理解Spark:核心思想與源碼分析》一書第三章第一部分的內容請看鏈接《深入理解Spark:核心思想與源碼分析》——SparkContext的初始化(伯篇)》
《深入理解Spark:核心思想與源碼分析》一書第三章第二部分的內容請看鏈接《深入理解Spark:核心思想與源碼分析》——SparkContext的初始化(仲篇)》
本文展現第3章第三部分的內容:
3.8 TaskScheduler的啟動
3.7節介紹了任務調度器TaskScheduler的創建,要想TaskScheduler發揮作用,必須要啟動它,代碼如下。
taskScheduler.start()
TaskScheduler在啟動的時候,實際調用了backend的start方法。
override def start() { backend.start() }
以LocalBackend為例,啟動LocalBackend時向actorSystem注冊了LocalActor,見代碼清單3-30所示(在《深入理解Spark:核心思想與源碼分析》——SparkContext的初始化(中)》一文)。
3.8.1 創建LocalActor
創建LocalActor的過程主要是構建本地的Executor,見代碼清單3-36。
代碼清單3-36 LocalActor的實現
private[spark] class LocalActor(scheduler: TaskSchedulerImpl, executorBackend: LocalBackend, private val totalCores: Int) extends Actor with ActorLogReceive with Logging { import context.dispatcher // to use Akka's scheduler.scheduleOnce() private var freeCores = totalCores private val localExecutorId = SparkContext.DRIVER_IDENTIFIER private val localExecutorHostname = "localhost" val executor = new Executor( localExecutorId, localExecutorHostname, scheduler.conf.getAll, totalCores, isLocal = true) override def receiveWithLogging = { case ReviveOffers => reviveOffers() case StatusUpdate(taskId, state, serializedData) => scheduler.statusUpdate(taskId, state, serializedData) if (TaskState.isFinished(state)) { freeCores += scheduler.CPUS_PER_TASK reviveOffers() } case KillTask(taskId, interruptThread) => executor.killTask(taskId, interruptThread) case StopExecutor => executor.stop() } }
Executor的構建,見代碼清單3-37,主要包括以下步驟:
1) 創建並注冊ExecutorSource。ExecutorSource是做什么的呢?筆者將在3.10.2節詳細介紹。
2) 獲取SparkEnv。如果是非local模式,Worker上的CoarseGrainedExecutorBackend向Driver上的CoarseGrainedExecutorBackend注冊Executor時,則需要新建SparkEnv。可以修改屬性spark.executor.port(默認為0,表示隨機生成)來配置Executor中的ActorSystem的端口號。
3) 創建並注冊ExecutorActor。ExecutorActor負責接受發送給Executor的消息。
4) urlClassLoader的創建。為什么需要創建這個ClassLoader?在非local模式中,Driver或者Worker上都會有多個Executor,每個Executor都設置自身的urlClassLoader,用於加載任務上傳的jar包中的類,有效對任務的類加載環境進行隔離。
5) 創建Executor執行TaskRunner任務(TaskRunner將在5.5節介紹)的線程池。此線程池是通過調用Utils.newDaemonCachedThreadPool創建的,具體實現請參閱附錄A。
6) 啟動Executor的心跳線程。此線程用於向Driver發送心跳。
此外,還包括Akka發送消息的幀大小(10485760字節)、結果總大小的字節限制(1073741824字節)、正在運行的task的列表、設置serializer的默認ClassLoader為創建的ClassLoader等。
代碼清單3-37 Executor的構建
val executorSource = new ExecutorSource(this, executorId) private val env = { if (!isLocal) { val port = conf.getInt("spark.executor.port", 0) val _env = SparkEnv.createExecutorEnv( conf, executorId, executorHostname, port, numCores, isLocal, actorSystem) SparkEnv.set(_env) _env.metricsSystem.registerSource(executorSource) _env.blockManager.initialize(conf.getAppId) _env } else { SparkEnv.get } } private val executorActor = env.actorSystem.actorOf( Props(new ExecutorActor(executorId)), "ExecutorActor") private val urlClassLoader = createClassLoader() private val replClassLoader = addReplClassLoaderIfNeeded(urlClassLoader) env.serializer.setDefaultClassLoader(urlClassLoader) private val akkaFrameSize = AkkaUtils.maxFrameSizeBytes(conf) private val maxResultSize = Utils.getMaxResultSize(conf) val threadPool = Utils.newDaemonCachedThreadPool("Executor task launch worker") private val runningTasks = new ConcurrentHashMap[Long, TaskRunner] startDriverHeartbeater()
3.8.2 ExecutorSource的創建與注冊
ExecutorSource用於測量系統。通過metricRegistry的register方法注冊計量,這些計量信息包括threadpool.activeTasks、threadpool.completeTasks、threadpool.currentPool_size、threadpool.maxPool_size、filesystem.hdfs.write_bytes、filesystem.hdfs.read_ops、filesystem.file.write_bytes、filesystem.hdfs.largeRead_ops、filesystem.hdfs.write_ops等,ExecutorSource的實現見代碼清單3-38。Metric接口的具體實現,參考附錄D。
代碼清單3-38 ExecutorSource的實現
private[spark] class ExecutorSource(val executor: Executor, executorId: String) extends Source { private def fileStats(scheme: String) : Option[FileSystem.Statistics] = FileSystem.getAllStatistics().filter(s => s.getScheme.equals(scheme)).headOption private def registerFileSystemStat[T]( scheme: String, name: String, f: FileSystem.Statistics => T, defaultValue: T) = { metricRegistry.register(MetricRegistry.name("filesystem", scheme, name), new Gauge[T] { override def getValue: T = fileStats(scheme).map(f).getOrElse(defaultValue) }) } override val metricRegistry = new MetricRegistry() override val sourceName = "executor" metricRegistry.register(MetricRegistry.name("threadpool", "activeTasks"), new Gauge[Int] { override def getValue: Int = executor.threadPool.getActiveCount() }) metricRegistry.register(MetricRegistry.name("threadpool", "completeTasks"), new Gauge[Long] { override def getValue: Long = executor.threadPool.getCompletedTaskCount() }) metricRegistry.register(MetricRegistry.name("threadpool", "currentPool_size"), new Gauge[Int] { override def getValue: Int = executor.threadPool.getPoolSize() }) metricRegistry.register(MetricRegistry.name("threadpool", "maxPool_size"), new Gauge[Int] { override def getValue: Int = executor.threadPool.getMaximumPoolSize() }) // Gauge for file system stats of this executor for (scheme <- Array("hdfs", "file")) { registerFileSystemStat(scheme, "read_bytes", _.getBytesRead(), 0L) registerFileSystemStat(scheme, "write_bytes", _.getBytesWritten(), 0L) registerFileSystemStat(scheme, "read_ops", _.getReadOps(), 0) registerFileSystemStat(scheme, "largeRead_ops", _.getLargeReadOps(), 0) registerFileSystemStat(scheme, "write_ops", _.getWriteOps(), 0) } }
創建完ExecutorSource后,調用MetricsSystem的registerSource方法將ExecutorSource注冊到MetricsSystem。registerSource方法使用MetricRegistry的register方法,將Source注冊到MetricRegistry,見代碼清單3-39。關於MetricRegistry,具體參閱附錄D。
代碼清單3-39 MetricsSystem注冊Source的實現
def registerSource(source: Source) { sources += source try { val regName = buildRegistryName(source) registry.register(regName, source.metricRegistry) } catch { case e: IllegalArgumentException => logInfo("Metrics already registered", e) } }
3.8.3 ExecutorActor的構建與注冊
ExecutorActor很簡單,當接收到SparkUI發來的消息時,將所有線程的棧信息發送回去,代碼實現如下。
override def receiveWithLogging = { case TriggerThreadDump => sender ! Utils.getThreadDump() }
3.8.4 Spark自身ClassLoader的創建
獲取要創建的ClassLoader的父加載器currentLoader,然后根據currentJars生成URL數組,spark.files.userClassPathFirst屬性指定加載類時是否先從用戶的classpath下加載,最后創建ExecutorURLClassLoader或者ChildExecutorURLClassLoader,見代碼清單3-40。
代碼清單3-40 Spark自身ClassLoader的創建
private def createClassLoader(): MutableURLClassLoader = { val currentLoader = Utils.getContextOrSparkClassLoader val urls = currentJars.keySet.map { uri => new File(uri.split("/").last).toURI.toURL }.toArray val userClassPathFirst = conf.getBoolean("spark.files.userClassPathFirst", false) userClassPathFirst match { case true => new ChildExecutorURLClassLoader(urls, currentLoader) case false => new ExecutorURLClassLoader(urls, currentLoader) } }
Utils.getContextOrSparkClassLoader的實現見附錄A。ExecutorURLClassLoader或者ChildExecutorURLClassLoader實際上都繼承了URLClassLoader,見代碼清單3-41。
代碼清單3-41 ChildExecutorURLClassLoader與ExecutorURLClassLoader的實現
private[spark] class ChildExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader) extends MutableURLClassLoader { private object userClassLoader extends URLClassLoader(urls, null){ override def addURL(url: URL) { super.addURL(url) } override def findClass(name: String): Class[_] = { super.findClass(name) } } private val parentClassLoader = new ParentClassLoader(parent) override def findClass(name: String): Class[_] = { try { userClassLoader.findClass(name) } catch { case e: ClassNotFoundException => { parentClassLoader.loadClass(name) } } } def addURL(url: URL) { userClassLoader.addURL(url) } def getURLs() = { userClassLoader.getURLs() } } private[spark] class ExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader) extends URLClassLoader(urls, parent) with MutableURLClassLoader { override def addURL(url: URL) { super.addURL(url) } }
如果需要REPL交互,還會調用addReplClassLoaderIfNeeded創建replClassLoader,見代碼清單3-42。
代碼清單3-42 addReplClassLoaderIfNeeded的實現
private def addReplClassLoaderIfNeeded(parent: ClassLoader): ClassLoader = { val classUri = conf.get("spark.repl.class.uri", null) if (classUri != null) { logInfo("Using REPL class URI: " + classUri) val userClassPathFirst: java.lang.Boolean = conf.getBoolean("spark.files.userClassPathFirst", false) try { val klass = Class.forName("org.apache.spark.repl.ExecutorClassLoader") .asInstanceOf[Class[_ <: ClassLoader]] val constructor = klass.getConstructor(classOf[SparkConf], classOf[String], classOf[ClassLoader], classOf[Boolean]) constructor.newInstance(conf, classUri, parent, userClassPathFirst) } catch { case _: ClassNotFoundException => logError("Could not find org.apache.spark.repl.ExecutorClassLoader on classpath!") System.exit(1) null } } else { parent } }
3.8.5 啟動Executor的心跳線程
Executor的心跳由startDriverHeartbeater啟動,見代碼清單3-43。Executor心跳線程的間隔由屬性spark.executor.heartbeatInterval配置,默認是10000毫秒。此外,超時時間是30秒,超時重試次數是3次,重試間隔是3000毫秒,使用actorSystem.actorSelection (url)方法查找到匹配的Actor引用, url是akka.tcp://sparkDriver@ $driverHost:$driverPort/user/HeartbeatReceiver,最終創建一個運行過程中,每次會休眠10000到20000毫秒的線程。此線程從runningTasks獲取最新的有關Task的測量信息,將其與executorId、blockManagerId封裝為Heartbeat消息,向HeartbeatReceiver發送Heartbeat消息。
代碼清單3-43 啟動Executor的心跳線程
def startDriverHeartbeater() { val interval = conf.getInt("spark.executor.heartbeatInterval", 10000) val timeout = AkkaUtils.lookupTimeout(conf) val retryAttempts = AkkaUtils.numRetries(conf) val retryIntervalMs = AkkaUtils.retryWaitMs(conf) val heartbeatReceiverRef = AkkaUtils.makeDriverRef("HeartbeatReceiver", conf,env.actorSystem) val t = new Thread() { override def run() { // Sleep a random interval so the heartbeats don't end up in sync Thread.sleep(interval + (math.random * interval).asInstanceOf[Int]) while (!isStopped) { val tasksMetrics = new ArrayBuffer[(Long, TaskMetrics)]() val curGCTime = gcTime for (taskRunner <- runningTasks.values()) { if (!taskRunner.attemptedTask.isEmpty) { Option(taskRunner.task).flatMap(_.metrics).foreach { metrics => metrics.updateShuffleReadMetrics metrics.jvmGCTime = curGCTime - taskRunner.startGCTime if (isLocal) { val copiedMetrics = Utils.deserialize[TaskMetrics](Utils.serialize(metrics)) tasksMetrics += ((taskRunner.taskId, copiedMetrics)) } else { // It will be copied by serialization tasksMetrics += ((taskRunner.taskId, metrics)) } } } } val message = Heartbeat(executorId, tasksMetrics.toArray, env.blockManager.blockManagerId) try { val response = AkkaUtils.askWithReply[HeartbeatResponse](message, heartbeatReceiverRef, retryAttempts, retryIntervalMs, timeout) if (response.reregisterBlockManager) { logWarning("Told to re-register on heartbeat") env.blockManager.reregister() } } catch { case NonFatal(t) => logWarning("Issue communicating with driver in heartbeater", t) } Thread.sleep(interval) } } } t.setDaemon(true) t.setName("Driver Heartbeater") t.start() }
這個心跳線程的作用是什么呢?其作用有兩個:
q 更新正在處理的任務的測量信息;
q 通知BlockManagerMaster,此Executor上的BlockManager依然活着。
下面對心跳線程的實現詳細分析下,讀者可以自行選擇是否需要閱讀。
初始化TaskSchedulerImpl后會創建心跳接收器HeartbeatReceiver。HeartbeatReceiver接受所有分配給當前Driver Application的Executor的心跳,並將Task、Task計量信息、心跳等交給TaskSchedulerImpl和DAGScheduler作進一步處理。創建心跳接收器的代碼如下。
private val heartbeatReceiver = env.actorSystem.actorOf( Props(new HeartbeatReceiver(taskScheduler)), "HeartbeatReceiver")
HeartbeatReceiver在收到心跳消息后,會調用TaskScheduler的executorHeartbeatReceived方法,代碼如下。
override def receiveWithLogging = { case Heartbeat(executorId, taskMetrics, blockManagerId) => val response = HeartbeatResponse( !scheduler.executorHeartbeatReceived(executorId, taskMetrics, blockManagerId)) sender ! response }
executorHeartbeatReceived的實現代碼如下。
val metricsWithStageIds: Array[(Long, Int, Int, TaskMetrics)] = synchronized { taskMetrics.flatMap { case (id, metrics) => taskIdToTaskSetId.get(id) .flatMap(activeTaskSets.get) .map(taskSetMgr => (id, taskSetMgr.stageId, taskSetMgr.taskSet.attempt, metrics)) } } dagScheduler.executorHeartbeatReceived(execId, metricsWithStageIds, blockManagerId)
這段程序通過遍歷taskMetrics,依據taskIdToTaskSetId和activeTaskSets找到TaskSetManager。然后將taskId、TaskSetManager.stageId、TaskSetManager .taskSet.attempt、TaskMetrics封裝到Array[(Long, Int, Int, TaskMetrics)]的數組metricsWithStageIds中。最后調用了dagScheduler的executorHeartbeatReceived方法,其實現如下。
listenerBus.post(SparkListenerExecutorMetricsUpdate(execId, taskMetrics)) implicit val timeout = Timeout(600 seconds) Await.result( blockManagerMaster.driverActor ? BlockManagerHeartbeat(blockManagerId), timeout.duration).asInstanceOf[Boolean]
dagScheduler將executorId、metricsWithStageIds封裝為SparkListenerExecutorMetricsUpdate事件,並post到listenerBus中,此事件用於更新Stage的各種測量數據。最后給BlockManagerMaster持有的BlockManagerMasterActor發送BlockManagerHeartbeat消息。BlockManagerMasterActor在收到消息后會匹配執行heartbeatReceived方法(會在4.3.1節介紹)。heartbeatReceived最終更新BlockManagerMaster對BlockManager最后可見時間(即更新BlockManagerId對應的BlockManagerInfo的_lastSeenMs,見代碼清單3-44)。
代碼清單3-44 BlockManagerMasterActor的心跳處理
private def heartbeatReceived(blockManagerId: BlockManagerId): Boolean = { if (!blockManagerInfo.contains(blockManagerId)) { blockManagerId.isDriver && !isLocal } else { blockManagerInfo(blockManagerId).updateLastSeenMs() true } }
local模式下Executor的心跳通信過程,可以用圖3-3來表示。
圖3-3 Executor的心跳通信過程
注意:在非local模式中Executor發送心跳的過程是一樣的,主要的區別是Executor進程與Driver不在同一個進程,甚至不在同一個節點上。
接下來會初始化塊管理器BlockManager,代碼如下。
env.blockManager.initialize(applicationId)
具體的初始化過程,請參閱第4章。
未完待續。。。
后記:自己犧牲了7個月的周末和下班空閑時間,通過研究Spark源碼和原理,總結整理的《深入理解Spark:核心思想與源碼分析》一書現在已經正式出版上市,目前亞馬遜、京東、當當、天貓等網站均有銷售,歡迎感興趣的同學購買。我開始研究源碼時的Spark版本是1.2.0,經過7個多月的研究和出版社近4個月的流程,Spark自身的版本迭代也很快,如今最新已經是1.6.0。目前市面上另外2本源碼研究的Spark書籍的版本分別是0.9.0版本和1.2.0版本,看來這些書的作者都與我一樣,遇到了這種問題。由於研究和出版都需要時間,所以不能及時跟上Spark的腳步,還請大家見諒。但是Spark核心部分的變化相對還是很少的,如果對版本不是過於追求,依然可以選擇本書。
京東(現有滿100減30活動):http://item.jd.com/11846120.html