1. 首先啟動zookeeper
2. 啟動kafka
3. 核心代碼
package streaming;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
public class MyProducer {
public static void main(String[] args) {
Properties props = new Properties();
props.setProperty("metadata.broker.list","localhost:9092");
props.setProperty("serializer.class","kafka.serializer.StringEncoder");
props.put("request.required.acks","1");
ProducerConfig config = new ProducerConfig(props);
//創建生產這對象
Producer<String, String> producer = new Producer<String, String>(config);
//生成消息
KeyedMessage<String, String> data1 = new KeyedMessage<String, String>("top1","test kafka");
KeyedMessage<String, String> data2 = new KeyedMessage<String, String>("top2","hello world");
try {
int i =1;
while(i < 100){
//發送消息
producer.send(data1);
producer.send(data2);
i++;
Thread.sleep(1000);
}
} catch (Exception e) {
e.printStackTrace();
}
producer.close();
}
}
- 在SparkStreaming中接收指定話題的數據,對單詞進行統計
package streaming;
import java.util.HashMap;
import java.util.Map;
import java.util.regex.Pattern;
import org.apache.spark.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.*;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import scala.Tuple2;
import com.google.common.collect.Lists;
public class KafkaStreamingWordCount {
public static void main(String[] args) {
//設置匹配模式,以空格分隔
final Pattern SPACE = Pattern.compile(" ");
//接收數據的地址和端口
String zkQuorum = "localhost:2181";
//話題所在的組
String group = "1";
//話題名稱以“,”分隔
String topics = "top1,top2";
//每個話題的分片數
int numThreads = 2;
SparkConf sparkConf = new SparkConf().setAppName("KafkaWordCount").setMaster("local[2]");
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(10000));
// jssc.checkpoint("checkpoint"); //設置檢查點
//存放話題跟分片的映射關系
Map<String, Integer> topicmap = new HashMap<>();
String[] topicsArr = topics.split(",");
int n = topicsArr.length;
for(int i=0;i<n;i++){
topicmap.put(topicsArr[i], numThreads);
}
//從Kafka中獲取數據轉換成RDD
JavaPairReceiverInputDStream<String, String> lines = KafkaUtils.createStream(jssc, zkQuorum, group, topicmap);
//從話題中過濾所需數據
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<Tuple2<String, String>, String>() {
@Override
public Iterable<String> call(Tuple2<String, String> arg0)
throws Exception {
return Lists.newArrayList(SPACE.split(arg0._2));
}
});
//對其中的單詞進行統計
JavaPairDStream<String, Integer> wordCounts = words.mapToPair(
new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}).reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});
//打印結果
wordCounts.print();
jssc.start();
jssc.awaitTermination();
}
}