MapReduce工作原理圖文詳解


前言:

MapReduce是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Reduce(歸約)",和它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。它極大地方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統上。 當前的軟件實現是指定一個Map(映射)函數,用來把一組鍵值對映射成一組新的鍵值對,指定並發的Reduce(歸約)函數,用來保證所有映射的鍵值對中的每一個共享相同的鍵組。

呵呵,下面我們進入正題,這篇文章主要分析以下兩點內容:
目錄:
1.MapReduce作業運行流程
2.Map、Reduce任務中Shuffle和排序的過程


正文:

1.MapReduce作業運行流程


下面貼出我用visio2010畫出的流程示意圖:

 

 

 

流程分析:


1.在客戶端啟動一個作業。


2.向JobTracker請求一個Job ID。


3.將運行作業所需要的資源文件復制到HDFS上,包括MapReduce程序打包的JAR文件、配置文件和客戶端計算所得的輸入划分信息。這些文件都存放在JobTracker專門為該作業創建的文件夾中。文件夾名為該作業的Job ID。JAR文件默認會有10個副本(mapred.submit.replication屬性控制);輸入划分信息告訴了JobTracker應該為這個作業啟動多少個map任務等信息。


4.JobTracker接收到作業后,將其放在一個作業隊列里,等待作業調度器對其進行調度(這里是不是很像微機中的進程調度呢,呵呵),當作業調度器根據自己的調度算法調度到該作業時,會根據輸入划分信息為每個划分創建一個map任務,並將map任務分配給TaskTracker執行。對於map和reduce任務,TaskTracker根據主機核的數量和內存的大小有固定數量的map槽和reduce槽。這里需要強調的是:map任務不是隨隨便便地分配給某個TaskTracker的,這里有個概念叫:數據本地化(Data-Local)。意思是:將map任務分配給含有該map處理的數據塊的TaskTracker上,同時將程序JAR包復制到該TaskTracker上來運行,這叫“運算移動,數據不移動”。而分配reduce任務時並不考慮數據本地化。


5.TaskTracker每隔一段時間會給JobTracker發送一個心跳,告訴JobTracker它依然在運行,同時心跳中還攜帶着很多的信息,比如當前map任務完成的進度等信息。當JobTracker收到作業的最后一個任務完成信息時,便把該作業設置成“成功”。當JobClient查詢狀態時,它將得知任務已完成,便顯示一條消息給用戶。

以上是在客戶端、JobTracker、TaskTracker的層次來分析MapReduce的工作原理的,下面我們再細致一點,從map任務和reduce任務的層次來分析分析吧。

2.Map、Reduce任務中Shuffle和排序的過程


同樣貼出我在visio中畫出的流程示意圖:

 

流程分析:

Map端:


1.每個輸入分片會讓一個map任務來處理,默認情況下,以HDFS的一個塊的大小(默認為64M)為一個分片,當然我們也可以設置塊的大小。map輸出的結果會暫且放在一個環形內存緩沖區中(該緩沖區的大小默認為100M,由io.sort.mb屬性控制),當該緩沖區快要溢出時(默認為緩沖區大小的80%,由io.sort.spill.percent屬性控制),會在本地文件系統中創建一個溢出文件,將該緩沖區中的數據寫入這個文件。

2.在寫入磁盤之前,線程首先根據reduce任務的數目將數據划分為相同數目的分區,也就是一個reduce任務對應一個分區的數據。這樣做是為了避免有些reduce任務分配到大量數據,而有些reduce任務卻分到很少數據,甚至沒有分到數據的尷尬局面。其實分區就是對數據進行hash的過程。然后對每個分區中的數據進行排序,如果此時設置了Combiner,將排序后的結果進行Combia操作,這樣做的目的是讓盡可能少的數據寫入到磁盤。

3.當map任務輸出最后一個記錄時,可能會有很多的溢出文件,這時需要將這些文件合並。合並的過程中會不斷地進行排序和combia操作,目的有兩個:1.盡量減少每次寫入磁盤的數據量;2.盡量減少下一復制階段網絡傳輸的數據量。最后合並成了一個已分區且已排序的文件。為了減少網絡傳輸的數據量,這里可以將數據壓縮,只要將mapred.compress.map.out設置為true就可以了。

4.將分區中的數據拷貝給相對應的reduce任務。有人可能會問:分區中的數據怎么知道它對應的reduce是哪個呢?其實map任務一直和其父TaskTracker保持聯系,而TaskTracker又一直和JobTracker保持心跳。所以JobTracker中保存了整個集群中的宏觀信息。只要reduce任務向JobTracker獲取對應的map輸出位置就ok了哦。

到這里,map端就分析完了。那到底什么是Shuffle呢?Shuffle的中文意思是“洗牌”,如果我們這樣看:一個map產生的數據,結果通過hash過程分區卻分配給了不同的reduce任務,是不是一個對數據洗牌的過程呢?呵呵。

Reduce端:

1.Reduce會接收到不同map任務傳來的數據,並且每個map傳來的數據都是有序的。如果reduce端接受的數據量相當小,則直接存儲在內存中(緩沖區大小由mapred.job.shuffle.input.buffer.percent屬性控制,表示用作此用途的堆空間的百分比),如果數據量超過了該緩沖區大小的一定比例(由mapred.job.shuffle.merge.percent決定),則對數據合並后溢寫到磁盤中。

2.隨着溢寫文件的增多,后台線程會將它們合並成一個更大的有序的文件,這樣做是為了給后面的合並節省時間。其實不管在map端還是reduce端,MapReduce都是反復地執行排序,合並操作,現在終於明白了有些人為什么會說:排序是hadoop的靈魂。

3.合並的過程中會產生許多的中間文件(寫入磁盤了),但MapReduce會讓寫入磁盤的數據盡可能地少,並且最后一次合並的結果並沒有寫入磁盤,而是直接輸入到reduce函數。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM