基於“局部標准差”的圖像增強(原理、算法、代碼)
一、理論
圖像增強算法的基本原則是“降低低頻區域,突出高頻區域”,以此強化邊緣,達到增強的目的。最簡單的例子就是通過原始圖像減去高斯模糊處理后的圖像,就能夠將邊緣強化出來。
直方圖均衡化也是一種非常常見的增強方法。但是為了避免背景的干擾,更傾向於采用“局部”方法進行處理。我們這里着重研究自適應對比度增強(ACE)的相關內容。
ACE的定義和原理看上去還是比較簡單的。這里的
和
都可以根據圖像本身計算出來。而
則需要單獨計算。



可以為單獨的常量,或者通過
來代替。這里的D是一個全局的值,比如平均值。
二、實現
涉及到局部的運算,自然而然會想到使用卷積的方法。更好的是Opencv提供了專門的函數用來做這個工作—BLUR
文檔中寫到:

那么正是我們想要的結果。



//ace 自適應對比度均衡研究
//by jsxyhelu
//感謝 imageshop
# include "stdafx.h"
# include <iostream >
# include "opencv2/core/core.hpp"
# include "opencv2/highgui/highgui.hpp"
# include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;
//點乘法 elementWiseMultiplication
cv : :Mat EWM(cv : :Mat m1,cv : :Mat m2){
Mat dst =m1.mul(m2);
return dst;
}
void main()
{
Mat src = imread( "hand.jpg", 0);
Mat meanMask;
Mat varMask;
Mat meanGlobal;
Mat varGlobal;
Mat dst;
Mat tmp;
Mat tmp2;
int C = 30;
int D = 133;
//全局均值和均方差
blur(src.clone(),meanGlobal,src.size());
varGlobal = src - meanGlobal;
varGlobal = EWM(varGlobal,varGlobal);
blur(src.clone(),meanMask,Size( 50, 50)); //meanMask為局部均值
tmp = src - meanMask;
varMask = EWM(tmp,tmp);
blur(varMask,varMask,Size( 50, 50)); //varMask為局部方差
dst = meanMask + C *tmp;
imshow( "src",src);
imshow( "dst",dst);
waitKey();
}
//by jsxyhelu
//感謝 imageshop
# include "stdafx.h"
# include <iostream >
# include "opencv2/core/core.hpp"
# include "opencv2/highgui/highgui.hpp"
# include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;
//點乘法 elementWiseMultiplication
cv : :Mat EWM(cv : :Mat m1,cv : :Mat m2){
Mat dst =m1.mul(m2);
return dst;
}
void main()
{
Mat src = imread( "hand.jpg", 0);
Mat meanMask;
Mat varMask;
Mat meanGlobal;
Mat varGlobal;
Mat dst;
Mat tmp;
Mat tmp2;
int C = 30;
int D = 133;
//全局均值和均方差
blur(src.clone(),meanGlobal,src.size());
varGlobal = src - meanGlobal;
varGlobal = EWM(varGlobal,varGlobal);
blur(src.clone(),meanMask,Size( 50, 50)); //meanMask為局部均值
tmp = src - meanMask;
varMask = EWM(tmp,tmp);
blur(varMask,varMask,Size( 50, 50)); //varMask為局部方差
dst = meanMask + C *tmp;
imshow( "src",src);
imshow( "dst",dst);
waitKey();
}
接下來,為了實現
那么需要計算局部標准差和全局均值或方差

前面已經計算出了局部均值,那么
tmp
= src
- meanMask;
varMask = EWM(tmp,tmp);
blur(varMask,varMask,Size( 50, 50)); //varMask為局部方差
varMask = EWM(tmp,tmp);
blur(varMask,varMask,Size( 50, 50)); //varMask為局部方差
計算出局部方差
//換算成局部標准差
varMask.convertTo(varMask,CV_32F);
for ( int i = 0;i <varMask.rows;i ++){
for ( int j = 0;j <varMask.cols;j ++){
varMask.at < float >(i,j) = ( float)sqrt(varMask.at < float >(i,j));
}
}
varMask.convertTo(varMask,CV_32F);
for ( int i = 0;i <varMask.rows;i ++){
for ( int j = 0;j <varMask.cols;j ++){
varMask.at < float >(i,j) = ( float)sqrt(varMask.at < float >(i,j));
}
}
換算成局部標准差
meanStdDev(src,meanGlobal,varGlobal);
//meanGlobal為全局均值 varGlobal為全局標准差
是opencv提供的全局均值和標准差計算函數。
全部代碼進行重構后如下
//ace 自適應對比度均衡研究
//by jsxyhelu
//感謝 imageshop
# include "stdafx.h"
# include <iostream >
# include "opencv2/core/core.hpp"
# include "opencv2/highgui/highgui.hpp"
# include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;
//點乘法 elementWiseMultiplication
cv : :Mat EWM(cv : :Mat m1,cv : :Mat m2){
Mat dst =m1.mul(m2);
return dst;
}
//圖像局部對比度增強算法
cv : :Mat ACE(cv : :Mat src, int C = 4, int n = 20, int MaxCG = 5){
Mat meanMask;
Mat varMask;
Mat meanGlobal;
Mat varGlobal;
Mat dst;
Mat tmp;
Mat tmp2;
blur(src.clone(),meanMask,Size( 50, 50)); //meanMask為局部均值
tmp = src - meanMask;
varMask = EWM(tmp,tmp);
blur(varMask,varMask,Size( 50, 50)); //varMask為局部方差
//換算成局部標准差
varMask.convertTo(varMask,CV_32F);
for ( int i = 0;i <varMask.rows;i ++){
for ( int j = 0;j <varMask.cols;j ++){
varMask.at < float >(i,j) = ( float)sqrt(varMask.at < float >(i,j));
}
}
meanStdDev(src,meanGlobal,varGlobal); //meanGlobal為全局均值 varGlobal為全局標准差
tmp2 = varGlobal /varMask;
for ( int i = 0;i <tmp2.rows;i ++){
for ( int j = 0;j <tmp2.cols;j ++){
if (tmp2.at < float >(i,j) >MaxCG){
tmp2.at < float >(i,j) = MaxCG;
}
}
}
tmp2.convertTo(tmp2,CV_8U);
tmp2 = EWM(tmp2,tmp);
dst = meanMask + tmp2;
imshow( "D方法",dst);
dst = meanMask + C *tmp;
imshow( "C方法",dst);
return dst;
}
void main()
{
Mat src = imread( "plant.bmp", 0);
imshow( "src",src);
ACE(src);
waitKey();
}
//by jsxyhelu
//感謝 imageshop
# include "stdafx.h"
# include <iostream >
# include "opencv2/core/core.hpp"
# include "opencv2/highgui/highgui.hpp"
# include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;
//點乘法 elementWiseMultiplication
cv : :Mat EWM(cv : :Mat m1,cv : :Mat m2){
Mat dst =m1.mul(m2);
return dst;
}
//圖像局部對比度增強算法
cv : :Mat ACE(cv : :Mat src, int C = 4, int n = 20, int MaxCG = 5){
Mat meanMask;
Mat varMask;
Mat meanGlobal;
Mat varGlobal;
Mat dst;
Mat tmp;
Mat tmp2;
blur(src.clone(),meanMask,Size( 50, 50)); //meanMask為局部均值
tmp = src - meanMask;
varMask = EWM(tmp,tmp);
blur(varMask,varMask,Size( 50, 50)); //varMask為局部方差
//換算成局部標准差
varMask.convertTo(varMask,CV_32F);
for ( int i = 0;i <varMask.rows;i ++){
for ( int j = 0;j <varMask.cols;j ++){
varMask.at < float >(i,j) = ( float)sqrt(varMask.at < float >(i,j));
}
}
meanStdDev(src,meanGlobal,varGlobal); //meanGlobal為全局均值 varGlobal為全局標准差
tmp2 = varGlobal /varMask;
for ( int i = 0;i <tmp2.rows;i ++){
for ( int j = 0;j <tmp2.cols;j ++){
if (tmp2.at < float >(i,j) >MaxCG){
tmp2.at < float >(i,j) = MaxCG;
}
}
}
tmp2.convertTo(tmp2,CV_8U);
tmp2 = EWM(tmp2,tmp);
dst = meanMask + tmp2;
imshow( "D方法",dst);
dst = meanMask + C *tmp;
imshow( "C方法",dst);
return dst;
}
void main()
{
Mat src = imread( "plant.bmp", 0);
imshow( "src",src);
ACE(src);
waitKey();
}

三、小結
從結果上來看,ACE算法對於特定情況下的圖片細節增強是顯著的,但是並不是適用於所有的情況,並且其參數需要手工進行調整。了解它的特性,就能夠解決一系列的問題,有效地增強現實。