Given an array of citations sorted in ascending order (each citation is a non-negative integer) of a researcher, write a function to compute the researcher's h-index.
According to the definition of h-index on Wikipedia: "A scientist has index h if h of his/her N papers have at least h citations each, and the other N − h papers have no more than h citations each."
Example:
Input:citations = [0,1,3,5,6]
Output: 3 Explanation:[0,1,3,5,6]
means the researcher has5
papers in total and each of them had received 0, 1, 3, 5, 6
citations respectively. Since the researcher has3
papers with at least3
citations each and the remaining two with no more than3
citations each, her h-index is3
.
Note:
If there are several possible values for h, the maximum one is taken as the h-index.
Follow up:
- This is a follow up problem to H-Index, where
citations
is now guaranteed to be sorted in ascending order. - Could you solve it in logarithmic time complexity?
這題是之前那道 H-Index 的拓展,輸入數組是有序的,讓我們在 O(log n) 的時間內完成計算,看到這個時間復雜度,而且數組又是有序的,應該有很敏銳的意識應該用二分查找法,屬於博主之前的總結帖 LeetCode Binary Search Summary 二分搜索法小結 中的第五類,目標值 target 會隨着 mid 值的變化而變化,這里的 right 的初始值和 while 循環條件是否加等號是需要注意的問題,一般來說,博主的習慣是把 right 初始化為數組的長度,然后循環條件中不加等號,但是這種 right 的初始化對於這種目標值不固定的情況下不好使,需要初始化為長度減1(目前博主還沒有遇到反例,有的話請務必告知博主)。那么此時循環條件中是否要加等號,這個其實很玄學,在 Find Peak Element 中,right 也是初始化為數組長度減1,但是循環條件卻不能加等號。這道題卻一定需要加等號,否則會跪在 [0] 這個 test case,有些時候固有的規律並不好使,可能只能代一些 corner case 來進行檢驗,比如 [], [0], [1,2] 這種最簡便的例子。
基於上面的分析,我們最先初始化 left 和 right 為0和 len-1,然后取中間值 mid,比較 citations[mid] 和 len-mid 做比較,如果前者大,則 right 移到 mid 之前,反之 right 移到 mid 之后,循環條件是 left<=right,最后返回 len-left 即可,參見代碼如下:
class Solution { public: int hIndex(vector<int>& citations) { int len = citations.size(), left = 0, right = len - 1; while (left <= right) { int mid = 0.5 * (left + right); if (citations[mid] == len - mid) return len - mid; else if (citations[mid] > len - mid) right = mid - 1; else left = mid + 1; } return len - left; } };
類似題目:
參考資料:
https://leetcode.com/problems/h-index-ii/
https://leetcode.com/problems/h-index-ii/discuss/71063/Standard-binary-search