[Android] createTrack_l


在分析AudioTrack的時候,第一步會new AudioTrack,並調用他的set方法。在set方法的最后調用了createTrack_l創建音軌。我們現在來分析createTrack_l的流程。

在分析createTrack_l之前,我們先來了解Android音頻流的從PCM到輸出的路線。首先,我們的PCM音頻數據一般會在用戶端,而混音會在AudioFlinger端,因此需要把PCM數據傳送給AudioFlinger,因此需要開辟出一塊內存用於數據傳送;數據到了AudioFlinger之后,可以給PCM數據調節音量,增加音效等(即混音),因此還需要一塊內存用於音效處理,這塊buffer在getOutput內已經開辟;混音完成后即可把PCM數據輸出給音頻設備進行播放。

Audio_outputPath

 

    creatTrack_l的任務主要是創建音軌,即開辟出數據傳送的內存。具體實現是創建出一塊share buffer,這塊buffer既可以被AudioTrack寫入,又可以被AudioFlinger讀取進行混音。

    createTrack總體可以分為三個步驟:

  1. 從AudioFlinger獲取創建sharebuffer所需的參數,如latency,framecount,sampleRate;然后與傳入的參數(framecount,sampleRate)做對比,目的是計算出正確的framecount
  2. 從AudioFlinger創建buffer,並創建對sharebuffer進行控制的對象AudioTrackServerProxy
  3. 創建可以對sharebuffer進行控制的對象AudioTrackClientProxy

 

1. 獲取正確framecount

AudioTrack按照如下方式獲取framecount

status_t AudioTrack::createTrack_l(

    status = AudioSystem::getLatency(output, streamType, &afLatency);

    status = AudioSystem::getFrameCount(output, streamType, &afFrameCount);

    status = AudioSystem::getSamplingRate(output, streamType, &afSampleRate);


    if (!audio_is_linear_pcm(format)) {
        if (sharedBuffer != 0) {
            // Same comment as below about ignoring frameCount parameter for set()
            frameCount = sharedBuffer->size();
        } else if (frameCount == 0) {
            frameCount = afFrameCount;
        }
        if (mNotificationFramesAct != frameCount) {
            mNotificationFramesAct = frameCount;
        }
    } else if (sharedBuffer != 0) {
        // user share buffer,we donot neet to allocate
        // Ensure that buffer alignment matches channel count
        // 8-bit data in shared memory is not currently supported by AudioFlinger
        size_t alignment = /* format == AUDIO_FORMAT_PCM_8_BIT ? 1 : */ 2;
        if (mChannelCount > 1) {
            alignment <<= 1;
        }
        if (((size_t)sharedBuffer->pointer() & (alignment - 1)) != 0) {
            return BAD_VALUE;
        }
        frameCount = sharedBuffer->size()/mChannelCount/sizeof(int16_t);

    } else if (!(flags & AUDIO_OUTPUT_FLAG_FAST)) {
        // non-fast 
        uint32_t minBufCount = 2;

        if (minBufCount <= nBuffering) {
            minBufCount = nBuffering;
        }

        // calculate buffer size by param from AudioFlinger
        size_t minFrameCount = (afFrameCount*sampleRate*minBufCount)/afSampleRate;

        if (frameCount == 0) {
            frameCount = minFrameCount;
        } else if (frameCount < minFrameCount) {
            frameCount = minFrameCount;
        }
    } else {
        // For fast tracks, the frame count calculations and checks are done by server
    }

 

先看一下AudioTrack計算framecount時的式子:

minFrameCount = (afFrameCount*sampleRate*minBufCount)/afSampleRate;

afFrameCount與afSampleRate都是從AudioFlinger得到的兩個參數。

  1. afFrameCount代表MixerBuffer的大小,單位為Frame。Frame的定義為PCM音頻數據的一個“采樣 * 音軌個數”。
  2. afSampleRate代表MixerBuffer的默認采樣率,即一秒內包含的Frame數目。

因此有如下公式:

$BufferSeconds = \frac{afFrameCount}{afSampleRate} = \frac{frameCount}{sampleRate}$

計算出buffer中包含多少秒音頻數據。

下面是一個buffer實例,雖然sample rate一般都會是44100,但是為了方便畫圖,下面以5代替

 

Audio_createTrack

 

AudioFlinger獲取AfFrameCount的過程如下:

//AudioFlinger.cpp
size_t AudioFlinger::frameCount(audio_io_handle_t output) const
{
    return thread->frameCount();
}

//Thread.h
virtual     size_t      frameCount() const { return mNormalFrameCount; }

//Thread.cpp
void AudioFlinger::PlaybackThread::readOutputParameters()
{
    mFrameCount = mOutput->stream->common.get_buffer_size(&mOutput->stream->common) / mFrameSize;
    mNormalFrameCount = multiplier * mFrameCount;
}

//Audio_hw.c
#define SHORT_PERIOD_SIZE 512

static size_t out_get_buffer_size_low_latency(const struct audio_stream *stream)
{
    struct tuna_stream_out *out = (struct tuna_stream_out *)stream;

    /* take resampling into account and return the closest majoring
    multiple of 16 frames, as audioflinger expects audio buffers to
    be a multiple of 16 frames. Note: we use the default rate here
    from pcm_config_tones.rate. */
    size_t size = (SHORT_PERIOD_SIZE * DEFAULT_OUT_SAMPLING_RATE) / pcm_config_tones.rate;
    size = ((size + 15) / 16) * 16;
    return size * audio_stream_frame_size((struct audio_stream *)stream);
}

 

獲取與AfSampleRate的過程如下:

//AudioFlinger.cpp
uint32_t AudioFlinger::sampleRate(audio_io_handle_t output) const
{
    return thread->sampleRate();
}

//Thread.h
uint32_t    sampleRate() const { return mSampleRate; }

//Thread.cpp  where sample rate be initialized
void AudioFlinger::PlaybackThread::readOutputParameters()
{
    mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
}

//Audio_hw.c
#define DEFAULT_OUT_SAMPLING_RATE 44100 // 48000 is possible but interacts poorly with HDMI

static uint32_t out_get_sample_rate(const struct audio_stream *stream)
{
    return DEFAULT_OUT_SAMPLING_RATE;
}

 

而minFrameCount則包含了minBufferCount,即share buffer有多少個Mixer Buffer的大小

    // The client's AudioTrack buffer is divided into n parts for purpose of wakeup by server, where
    //  n = 1   fast track; nBuffering is ignored
    //  n = 2   normal track, no sample rate conversion
    //  n = 3   normal track, with sample rate conversion
    //          (pessimistic; some non-1:1 conversion ratios don't actually need triple-buffering)
    //  n > 3   very high latency or very small notification interval; nBuffering is ignored

 

  1. 如果在調用set方法的的時候,指定了flag為fast track,則表明希望Audio Buffer內的數據被盡快處理,因此Buffer會被創建得比較小,期采用單buffer
  2. 一般情況下,即輸入PCM音頻數據的采樣率與輸出音頻數據的采樣率一樣的話,則不用進行采樣率轉換,采用雙buffer
  3. 在需要采樣率轉換的情況,則采用三buffer
  4. 在碰到高延遲的情況,(如硬件不能及時輸出PCM音頻),則需要更大的buffer對數據進行緩存

 

 

2. AudioFlinger創建share buffer

AudioTrack是通過調用AudioFlinger的createTrack的方法來實現創建share buffer。createTrack的步驟如下:

  1. 獲取輸出線程PlaybackThread
  2. 調用獲取到的PlaybackThread的createTrack_l函數來創建Track對象,在Track對象內部會創建share buffer
  3. 創建Track的binder對象TrackHandle,Track由於需要通過binder返回給AudioTrack,因此是個binder對象,該對象會包含share buffer的信息
sp<IAudioTrack> AudioFlinger::createTrack(...)
{
    PlaybackThread *thread = checkPlaybackThread_l(output);

    track = thread->createTrack_l(client, streamType, sampleRate, format,
            channelMask, frameCount, sharedBuffer, lSessionId, flags, tid, clientUid, &lStatus);

    trackHandle = new TrackHandle(track);
    return trackHandle;
}

 

①. 獲取輸出線程PlaybackThread

還記得getOutput時所創建的PlaybackThread嗎?PlaybackThread會在創建MixerThread時一同被創建。在getOutput內,我們把該thread放進了mPlaybackThreads進行維護。現在我們有需要把它取出來。

AudioFlinger::PlaybackThread *AudioFlinger::checkPlaybackThread_l(audio_io_handle_t output) const
{
    return mPlaybackThreads.valueFor(output).get();
}

 

②. 調用PlaybackThread的createTrack_l

在createTrack_l內調用了new Track來實現創建share buffer

sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(...)
{
            track = new Track(this, client, streamType, sampleRate, format,
                    channelMask, frameCount, sharedBuffer, sessionId, uid, *flags);
}

 

Track的父類是TrackBase,因此會先構建TrackBase對象

// TrackBase constructor must be called with AudioFlinger::mLock held
AudioFlinger::ThreadBase::TrackBase::TrackBase(...)
{
    // buffer header
    size_t size = sizeof(audio_track_cblk_t);

    // buffer content size
    size_t bufferSize = (sharedBuffer == 0 ? roundup(frameCount) : frameCount) * mFrameSize;
    if (sharedBuffer == 0) {
        size += bufferSize;
    }

    if (client != 0) {
        //allocate share buffer
        mCblkMemory = client->heap()->allocate(size);
        if (mCblkMemory != 0) {
            mCblk = static_cast<audio_track_cblk_t *>(mCblkMemory->pointer());
            // can't assume mCblk != NULL
        } else {
            ALOGE("not enough memory for AudioTrack size=%u", size);
            client->heap()->dump("AudioTrack");
            return;
        }
    } else {
        // this syntax avoids calling the audio_track_cblk_t constructor twice
        mCblk = (audio_track_cblk_t *) new uint8_t[size];
        // assume mCblk != NULL
    }

    // construct the shared structure in-place.
    if (mCblk != NULL) {
        // this is header above buffer content
        new(mCblk) audio_track_cblk_t();
        // clear all buffers
        mCblk->frameCount_ = frameCount;
        if (sharedBuffer == 0) {
            mBuffer = (char*)mCblk + sizeof(audio_track_cblk_t);
            memset(mBuffer, 0, bufferSize);
        } else {
            mBuffer = sharedBuffer->pointer();
        }

    }
}

其中,創建出來的buffer需要包含存放Audio PCM data的share buffer,還需要包含audio_track_cblk_t這個buffer頭。調用heap->allocate這個函數來創建share buffer,buffer頭部調用new(mCblk) audio_track_cblk_t;這種定位new的方式來創建。buffer的結構如下:

 

Audio_buffer

 

 

new Track在構造函數體內,會創建AudioTrackServerProxy,這個對象會被用作AudioFlinger這邊的buffer操作,由於share buffer是跨線程,甚至是跨進程的,而Proxy可以保證buffer訪問的線程安全。

AudioFlinger::PlaybackThread::Track::Track(
{
    mAudioTrackServerProxy = new AudioTrackServerProxy(mCblk, mBuffer, frameCount,mFrameSize);
    mServerProxy = mAudioTrackServerProxy;
}

 

 

③. 創建TrackHandle

由於share buffer不止會在AudioFlinger這端被讀取,還會在AudioTrack這端被寫入,因此創建出來的Track需要被傳送回AudioTrack。而在binder間傳送對象只有binder對象,因此需要構建binder對象TrackHandle,返回給AudioTrack。

sp<IAudioTrack> AudioFlinger::createTrack(...)
{
    trackHandle = new TrackHandle(track);
}

// TrackHandle is a BnBinder object
class TrackHandle : public android::BnAudioTrack {
...
}

 

至此,createTrack_l在AudioFlinger這端的工作基本完成了。

 

 

3. 創建ClientProxy

有ServerProxy,相應地也會有ClientProxy,AudioTrackClientProxy就是在AudioTrack端可以對Track(share buffer)進行操作的類。

從AudioFlinger的createTrack返回TrackHandle后,就能通過TrackHandle的相關函數獲得Track的信息,如buffer的起始地址等。用這些信息構造AudioTrackClientProxy.

status_t AudioTrack::createTrack_l(...)
{
    sp<IAudioTrack> track = audioFlinger->createTrack(...);
    sp<IMemory> iMem = track->getCblk();
    audio_track_cblk_t* cblk = static_cast<audio_track_cblk_t*>(iMem->pointer());

    mProxy = new AudioTrackClientProxy(cblk, buffers, frameCount, mFrameSizeAF);
}

 

 

4. 總結

最后,總結一下各個對象間的關系。

AudioFlinger:

  •     首先會在AudioFlinger端創建Track,Track內包含buffer的創建及buffer指針的維護
  •     Track內部有一個AudioTrackServerProxy的成員對象,用於進行buffer的相關操作
  •     TrackHandle是Track對象的Binder實例,用於通過Binder返回給AudioTrack

AudioTrack:

  •     IAudioTrack是TrackHandle在AudioTrack端相對應的類,該類用於提供buffer的相關信息給AudioTrackClientProxy
  •     AudioTrackClientProxy獲得buffer的信息后,即可以對buffer進行相關操作

 

Audio_createTrack11

 

 

createTrack_l的總體流程如下:

 

Audio_createTrack12


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM