ECG信號讀出,檢測QRS,P,T 波(小波去噪,並根據檢測),基於BP辨識的神經網絡


   這學期的課程選擇神經網絡。最后的作業處理ECG信號,並利用神經網絡識別。

1  ECG引進和閱讀ECG信號

1)ECG介紹

   詳細ECG背景應用就不介紹了,大家能夠參考百度 谷歌。僅僅是簡單說下ECG的結構:

   一個完整周期的ECG信號有 QRS P T 波組成,不同的人相應不用的波形,同一個人在不同的階段波形也不同。我們須要依據各個波形的特點,提取出相應的特征,對不同的人進行身份識別。

2)ECG信號讀取

首先須要到MIT-BIH數據庫中下載ECG信號,具體的下載地址與程序讀取內容介紹能夠參考一下地址(講述的非常具體):http://blog.csdn.net/chenyusiyuan/article/details/2027887
   讀代替碼(基於MATLAB)例如以下:
  
clc; clear all;
%------ SPECIFY DATA ------------------------------------------------------
%%選擇文件名稱
stringname='111';
%選擇你要處理的信號點數
points=10000; 
PATH= 'F:\ECG\MIT-BIH database directory'; % path, where data are saved
HEADERFILE= strcat(stringname,'.hea');      % header-file in text format
ATRFILE= strcat(stringname,'.atr');        % attributes-file in binary format
DATAFILE=strcat(stringname,'.dat');        % data-file
SAMPLES2READ=points;         % number of samples to be read
                      % in case of more than one signal:
                            % 2*SAMPLES2READ samples are read
   
%------ LOAD HEADER DATA --------------------------------------------------
fprintf(1,'\\n$> WORKING ON %s ...\n', HEADERFILE);
signalh= fullfile(PATH, HEADERFILE);
fid1=fopen(signalh,'r');
z= fgetl(fid1);
A= sscanf(z, '%*s %d %d %d',[1,3]);
nosig= A(1);  % number of signals
sfreq=A(2);   % sample rate of data
clear A;
for k=1:nosig
    z= fgetl(fid1);
    A= sscanf(z, '%*s %d %d %d %d %d',[1,5]);
    dformat(k)= A(1);           % format; here only 212 is allowed
    gain(k)= A(2);              % number of integers per mV
    bitres(k)= A(3);            % bitresolution
    zerovalue(k)= A(4);         % integer value of ECG zero point
    firstvalue(k)= A(5);        % first integer value of signal (to test for errors)
end;
fclose(fid1);
clear A;

%------ LOAD BINARY DATA --------------------------------------------------
if dformat~= [212,212], error('this script does not apply binary formats different to 212.'); end;
signald= fullfile(PATH, DATAFILE);            % data in format 212
fid2=fopen(signald,'r');
A= fread(fid2, [3, SAMPLES2READ], 'uint8')';  % matrix with 3 rows, each 8 bits long, = 2*12bit
fclose(fid2);
M2H= bitshift(A(:,2), -4);
M1H= bitand(A(:,2), 15);
PRL=bitshift(bitand(A(:,2),8),9);     % sign-bit
PRR=bitshift(bitand(A(:,2),128),5);   % sign-bit
M( : , 1)= bitshift(M1H,8)+ A(:,1)-PRL;
M( : , 2)= bitshift(M2H,8)+ A(:,3)-PRR;
if M(1,:) ~= firstvalue, error('inconsistency in the first bit values'); end;
switch nosig
case 2
    M( : , 1)= (M( : , 1)- zerovalue(1))/gain(1);
    M( : , 2)= (M( : , 2)- zerovalue(2))/gain(2);
    TIME=(0:(SAMPLES2READ-1))/sfreq;
case 1
    M( : , 1)= (M( : , 1)- zerovalue(1));
    M( : , 2)= (M( : , 2)- zerovalue(1));
    M=M';
    M(1)=[];
    sM=size(M);
    sM=sM(2)+1;
    M(sM)=0;
    M=M';
    M=M/gain(1);
    TIME=(0:2*(SAMPLES2READ)-1)/sfreq;
otherwise  % this case did not appear up to now!
    % here M has to be sorted!!!
    disp('Sorting algorithm for more than 2 signals not programmed yet!');
end;
clear A M1H M2H PRR PRL;
fprintf(1,'\\n$> LOADING DATA FINISHED \n');

%------ LOAD ATTRIBUTES DATA ----------------------------------------------
atrd= fullfile(PATH, ATRFILE);      % attribute file with annotation data
fid3=fopen(atrd,'r');
A= fread(fid3, [2, inf], 'uint8')';
fclose(fid3);
ATRTIME=[];
ANNOT=[];
sa=size(A);
saa=sa(1);
i=1;
while i<=saa
    annoth=bitshift(A(i,2),-2);
    if annoth==59
        ANNOT=[ANNOT;bitshift(A(i+3,2),-2)];
        ATRTIME=[ATRTIME;A(i+2,1)+bitshift(A(i+2,2),8)+...
                bitshift(A(i+1,1),16)+bitshift(A(i+1,2),24)];
        i=i+3;
    elseif annoth==60
        % nothing to do!
    elseif annoth==61
        % nothing to do!
    elseif annoth==62
        % nothing to do!
    elseif annoth==63
        hilfe=bitshift(bitand(A(i,2),3),8)+A(i,1);
        hilfe=hilfe+mod(hilfe,2);
        i=i+hilfe/2;
    else
        ATRTIME=[ATRTIME;bitshift(bitand(A(i,2),3),8)+A(i,1)];
        ANNOT=[ANNOT;bitshift(A(i,2),-2)];
   end;
   i=i+1;
end;
ANNOT(length(ANNOT))=[];       % last line = EOF (=0)
ATRTIME(length(ATRTIME))=[];   % last line = EOF
clear A;
ATRTIME= (cumsum(ATRTIME))/sfreq;
ind= find(ATRTIME <= TIME(end));
ATRTIMED= ATRTIME(ind);
ANNOT=round(ANNOT);
ANNOTD= ANNOT(ind);

%------ DISPLAY DATA ------------------------------------------------------
figure(1); clf, box on, hold on ;grid on ;
plot(TIME, M(:,1),'r');
if nosig==2
    plot(TIME, M(:,2),'b');
end;
for k=1:length(ATRTIMED)
    text(ATRTIMED(k),0,num2str(ANNOTD(k)));
end;
xlim([TIME(1), TIME(end)]);
xlabel('Time / s'); ylabel('Voltage / mV');
string=['ECG signal ',DATAFILE];
title(string);
fprintf(1,'\\n$> DISPLAYING DATA FINISHED \n');
% -------------------------------------------------------------------------
fprintf(1,'\\n$> ALL FINISHED \n');

以MIT-BIH數據庫中111.dat 為例。




2 去除高頻噪聲與基線漂移

   ECG讀取完后,原始ECG信號含有高頻噪聲和基線漂移,利用小波方法能夠去除對應噪聲。

詳細原理例如以下:將一維的ECG信號進行8層的小波分解后(MATLAB下wavedec函數,小波類型是bior2.6)得到對應的細節系數與近似系數。依據小波原理我們能夠知道。1,2層的細節系數包括了大部分高頻噪聲,8層的近似系數包括了基線漂移。

基於此。我們將1,2層的細節系數(即高頻系數置0),8成的近似系數(低頻系數)置0。在對應進行小波重構,重構后我們能夠明顯得到去噪信號。信號無基線漂移。

以下通過圖片與代碼進一步解說:

   小波去噪代碼:(matlab) 
  
%%%%%%%%%%%%%%%%%%%去除噪聲和基線漂移%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
level=8; wavename='bior2.6';
ecgdata=ECGsignalM1;
figure(2);
plot(ecgdata(1:points));grid on ;axis tight;axis([1,points,-2,5]);
title('原始ECG信號');
%%%%%%%%%%進行小波變換8層
[C,L]=wavedec(ecgdata,level,wavename);
%%%%%%%提取尺度系數,
A1=appcoef(C,L,wavename,1);
A2=appcoef(C,L,wavename,2);
A3=appcoef(C,L,wavename,3);
A4=appcoef(C,L,wavename,4);
A5=appcoef(C,L,wavename,5);
A6=appcoef(C,L,wavename,6);
A7=appcoef(C,L,wavename,7);
A8=appcoef(C,L,wavename,8);
%%%%%%%提取細節系數
D1=detcoef(C,L,1);
D2=detcoef(C,L,2);
D3=detcoef(C,L,3);
D4=detcoef(C,L,4);
D5=detcoef(C,L,5);
D6=detcoef(C,L,6);
D7=detcoef(C,L,7);
D8=detcoef(C,L,8);
%%%%%%%%%%%%重構
A8=zeros(length(A8),1); %去除基線漂移,8層低頻信息
RA7=idwt(A8,D8,wavename);
RA6=idwt(RA7(1:length(D7)),D7,wavename);
RA5=idwt(RA6(1:length(D6)),D6,wavename);
RA4=idwt(RA5(1:length(D5)),D5,wavename);
RA3=idwt(RA4(1:length(D4)),D4,wavename);
RA2=idwt(RA3(1:length(D3)),D3,wavename);
D2=zeros(length(D2),1); %去除高頻噪聲,2層高頻噪聲
RA1=idwt(RA2(1:length(D2)),D2,wavename);
D1=zeros(length(D1),1);%去除高頻噪聲,1層高頻噪聲
DenoisingSignal=idwt(RA1,D1,wavename);
figure(3);
plot(DenoisingSignal);
title('去除噪聲的ECG信號'); grid on; axis tight;axis([1,points,-2,5]);
clear ecgdata;

去噪前后對照圖像例如以下:
去噪前:


去噪后:


3 QRS 檢測

   QRS檢測是處理ECG信號的基礎,不管最后實現什么樣的功能,QRS波的檢測都是前提。所以准確的檢測QRS波是特征提取的前提。我採用基於二進樣條4層小波變換。在3層的細節系數中利用極大極小值方法能夠非常好的檢測出R波。3層細節系數的選擇是基於R波在3層系數下表現的與其它噪聲區別最大;詳細實現例如以下:
二進樣條小波濾波器:  低通濾波器:[1/4 3/4 3/4 1/4]
                      高通濾波器:[-1/4 -3/4 3/4 1/4]
在第3層細節系數中首先找到極大極小值對:
1)找極大值方法:找出斜率大於0的值,並賦值為1,其余為0,極大值就在序列類似1, 0這種點,即前面一個值比后面的大的值相應的位置點。
2)找極小值方法:類似極大值,找出斜率<0的值相應的位置,並賦值為1。其余的為0,極小值就在類似1,0的序列中相應的位置。即前面一個值比后面的大的值相應的位置點。
檢測出的極大極小值例如以下:

3)設置閾值。提取出R波。我們能夠看出。R波的值要明顯大於其它位置的值,其在3層細節系數的特點也類似於此。

這樣我們就能夠設置一個可靠的閾值(將全部點分為4部分。求出每部分最大值的平均值T。閾值為T/3)來提取一組相鄰的最大最小值對。這樣最大最小值間的過0點就是相應於原始信號的R波點。

R波相應的極大極小值對例如以下:
 

4)補償R波點。因為在二進樣條小波變換的過程中,3層細節系數與原始信號的相應的位置有10個點的漂移。在程序中須要補償。

(這個在程序中會給出)。

5)找Q S 波。基於R波的位置,在R波位置(在1層細節系數下)的前3個極點為Q波。在R波位置(1細節系數下)的后3個極點為S波。這樣我們就將QRS波定位出來。

6)因為不同的情況,可能造成R波的漏檢和錯檢(把T波檢測為R波),我們依據相鄰R波的距離進行檢測漏檢與錯檢。

當相鄰R波的距離<0.4 mean(RR)平均距離時,這是錯檢。這樣去除值小的R波。當相鄰R波的距離>1.6mean(RR)時。在兩個RR波間找到一個最大的極值對,定位R波。這是防止漏檢。

 
經過上述方法,一個魯棒性非常好的QRS檢測方法就出來了。經過測試,QRS檢測能達到98%。檢測結果R波用紅線標注,Q S 波用黑線標注。
 

4 T P 波檢測

P T 波的檢測與R波檢測有非常大的相同性。僅僅只是 P T 波在4層細節系數中能夠表述出更好的特性。相同依據依據極大極小值原理。能夠分別檢測出T P波,以及他們的起始點與終止點。即TB,TE,PB PE。詳細程序我會在稍后的程序中給出。


各波段檢測結果例如以下:


詳細QRS T P波檢查代碼例如以下:
<pre name="code" class="cpp">level=4;    sr=360; 
%讀入ECG信號
%load ecgdata.mat;
%load ECGsignalM1.mat;
%load Rsignal.mat
mydata = DenoisingSignal;
ecgdata=mydata';
swa=zeros(4,points);%存儲概貌信息
swd=zeros(4,points);%存儲細節信息
signal=ecgdata(0*points+1:1*points); %取點信號

%算小波系數和尺度系數
%低通濾波器 1/4 3/4 3/4 1/4
%高通濾波器 -1/4 -3/4 3/4 1/4
%二進樣條小波

for i=1:points-3
   swa(1,i+3)=1/4*signal(i+3-2^0*0)+3/4*signal(i+3-2^0*1)+3/4*signal(i+3-2^0*2)+1/4*signal(i+3-2^0*3);
   swd(1,i+3)=-1/4*signal(i+3-2^0*0)-3/4*signal(i+3-2^0*1)+3/4*signal(i+3-2^0*2)+1/4*signal(i+3-2^0*3);
end
j=2;
while j<=level
   for i=1:points-24
     swa(j,i+24)=1/4*swa(j-1,i+24-2^(j-1)*0)+3/4*swa(j-1,i+24-2^(j-1)*1)+3/4*swa(j-1,i+24-2^(j-1)*2)+1/4*swa(j-1,i+24-2^(j-1)*3);
     swd(j,i+24)=-1/4*swa(j-1,i+24-2^(j-1)*0)-3/4*swa(j-1,i+24-2^(j-1)*1)+3/4*swa(j-1,i+24-2^(j-1)*2)+1/4*swa(j-1,i+24-2^(j-1)*3);
   end
   j=j+1;
end
%畫出原信號和尺度系數。小波系數
%figure(10);
%subplot(level+1,1,1);plot(ecgdata(1:points));grid on ;axis tight;
%title('ECG信號在j=1,2,3,4尺度下的尺度系數對照');
%for i=1:level
%    subplot(level+1,1,i+1);
%    plot(swa(i,:));axis tight;grid on; xlabel('time');ylabel(strcat('a  ',num2str(i)));
%end
%figure(11);
%subplot(level,1,1); plot(ecgdata(1:points)); grid on;axis tight;
%title('ECG信號及其在j=1,2,3,4尺度下的尺度系數及小波系數');
%for i=1:level
%    subplot(level+1,2,2*(i)+1);
%    plot(swa(i,:)); axis tight;grid on;xlabel('time');
%    ylabel(strcat('a   ',num2str(i)));
%    subplot(level+1,2,2*(i)+2);
%    plot(swd(i,:)); axis tight;grid on;
%    ylabel(strcat('d   ',num2str(i)));
%end

%畫出原圖及小波系數
%figure(12);
%subplot(level,1,1); plot(real(ecgdata(1:points)),'b'); grid on;axis tight;
%title('ECG信號及其在j=1,2,3,4尺度下的小波系數');
%for i=1:level
%    subplot(level+1,1,i+1);
%    plot(swd(i,:),'b'); axis tight;grid on;
%    ylabel(strcat('d   ',num2str(i)));
%end

%**************************************求正負極大值對**********************%
ddw=zeros(size(swd));
pddw=ddw;
nddw=ddw;
%小波系數的大於0的點
posw=swd.*(swd>0);
%斜率大於0
pdw=((posw(:,1:points-1)-posw(:,2:points))<0);
%正極大值點
pddw(:,2:points-1)=((pdw(:,1:points-2)-pdw(:,2:points-1))>0);
%小波系數小於0的點
negw=swd.*(swd<0);
ndw=((negw(:,1:points-1)-negw(:,2:points))>0);
%負極大值點
nddw(:,2:points-1)=((ndw(:,1:points-2)-ndw(:,2:points-1))>0);
%或運算
ddw=pddw|nddw;
ddw(:,1)=1;
ddw(:,points)=1;
%求出極值點的值,其它點置0
wpeak=ddw.*swd;
wpeak(:,1)=wpeak(:,1)+1e-10;
wpeak(:,points)=wpeak(:,points)+1e-10;

%畫出各尺度下極值點
%figure(13);
%for i=1:level
%    subplot(level,1,i);
%    plot(wpeak(i,:)); axis tight;grid on;
%ylabel(strcat('j=   ',num2str(i)));
%end
%subplot(4,1,1);
%title('ECG信號在j=1,2,3,4尺度下的小波系數的模極大值點');

interva2=zeros(1,points);
intervaqs=zeros(1,points);
Mj1=wpeak(1,:);
Mj3=wpeak(3,:);
Mj4=wpeak(4,:);
%畫出尺度3極值點
figure(14);
plot (Mj3);
%title('尺度3下小波系數的模極大值點');

posi=Mj3.*(Mj3>0);
%求正極大值的平均
thposi=(max(posi(1:round(points/4)))+max(posi(round(points/4):2*round(points/4)))+max(posi(2*round(points/4):3*round(points/4)))+max(posi(3*round(points/4):4*round(points/4))))/4;
posi=(posi>thposi/3);
nega=Mj3.*(Mj3<0);
%求負極大值的平均
thnega=(min(nega(1:round(points/4)))+min(nega(round(points/4):2*round(points/4)))+min(nega(2*round(points/4):3*round(points/4)))+min(nega(3*round(points/4):4*round(points/4))))/4;
nega=-1*(nega<thnega/4);
%找出非0點
interva=posi+nega;
loca=find(interva);
for i=1:length(loca)-1
    if abs(loca(i)-loca(i+1))<80
       diff(i)=interva(loca(i))-interva(loca(i+1));
    else
       diff(i)=0;
    end
end
%找出極值對
loca2=find(diff==-2);
%負極大值點
interva2(loca(loca2(1:length(loca2))))=interva(loca(loca2(1:length(loca2))));
%正極大值點
interva2(loca(loca2(1:length(loca2))+1))=interva(loca(loca2(1:length(loca2))+1));
intervaqs(1:points-10)=interva2(11:points);
countR=zeros(1,1);
countQ=zeros(1,1);
countS=zeros(1,1);
mark1=0;
mark2=0;
mark3=0;
i=1;
j=1;
Rnum=0;
%*************************求正負極值對過零。即R波峰值,並檢測出QRS波起點及終點*******************%
while i<points
    if interva2(i)==-1
       mark1=i;
       i=i+1;
       while(i<points&interva2(i)==0)
          i=i+1;
       end
       mark2=i;
%求極大值對的過零點
       mark3= round((abs(Mj3(mark2))*mark1+mark2*abs(Mj3(mark1)))/(abs(Mj3(mark2))+abs(Mj3(mark1))));
%R波極大值點
       R_result(j)=mark3-10;%為何-10?經驗值吧
       countR(mark3-10)=1;
%求出QRS波起點
       kqs=mark3-10;
       markq=0;
     while (kqs>1)&&( markq< 3)
         if Mj1(kqs)~=0
            markq=markq+1;
         end
         kqs= kqs -1;
     end
  countQ(kqs)=-1;
  
%求出QRS波終點  
  kqs=mark3-10;
  marks=0;
  while (kqs<points)&&( marks<3)
      if Mj1(kqs)~=0
         marks=marks+1;
      end
      kqs= kqs+1;
  end
  countS(kqs)=-1;
  i=i+60;
  j=j+1;
  Rnum=Rnum+1;
 end
i=i+1;
end


%************************刪除多檢點,補償漏檢點**************************%
num2=1;
while(num2~=0)
   num2=0;
%j=3,過零點
   R=find(countR);
%過零點間隔
   R_R=R(2:length(R))-R(1:length(R)-1);
   RRmean=mean(R_R);
%當兩個R波間隔小於0.4RRmean時,去掉值小的R波
for i=2:length(R)
    if (R(i)-R(i-1))<=0.4*RRmean
        num2=num2+1;
        if signal(R(i))>signal(R(i-1))
            countR(R(i-1))=0;
        else
            countR(R(i))=0;
        end
    end
end
end

num1=2;
while(num1>0)
   num1=num1-1;
   R=find(countR);
   R_R=R(2:length(R))-R(1:length(R)-1);
   RRmean=mean(R_R);
%當發現R波間隔大於1.6RRmean時,減小閾值,在這一段檢測R波
for i=2:length(R)
    if (R(i)-R(i-1))>1.6*RRmean
        Mjadjust=wpeak(4,R(i-1)+80:R(i)-80);
        points2=(R(i)-80)-(R(i-1)+80)+1;
%求正極大值點
        adjustposi=Mjadjust.*(Mjadjust>0);
        adjustposi=(adjustposi>thposi/4);
%求負極大值點
        adjustnega=Mjadjust.*(Mjadjust<0);
        adjustnega=-1*(adjustnega<thnega/5);
%或運算
        interva4=adjustposi+adjustnega;
%找出非0點
        loca3=find(interva4);
        diff2=interva4(loca3(1:length(loca3)-1))-interva4(loca3(2:length(loca3)));
%假設有極大值對,找出極大值對
        loca4=find(diff2==-2);
        interva3=zeros(points2,1)';
        for j=1:length(loca4)
           interva3(loca3(loca4(j)))=interva4(loca3(loca4(j)));
           interva3(loca3(loca4(j)+1))=interva4(loca3(loca4(j)+1));
        end
        mark4=0;
        mark5=0;
        mark6=0;
    while j<points2
         if interva3(j)==-1;
            mark4=j;
            j=j+1;
            while(j<points2&interva3(j)==0)
                 j=j+1;
            end
            mark5=j;
%求過零點
            mark6= round((abs(Mjadjust(mark5))*mark4+mark5*abs(Mjadjust(mark4)))/(abs(Mjadjust(mark5))+abs(Mjadjust(mark4))));
            countR(R(i-1)+80+mark6-10)=1;
            j=j+60;
         end
         j=j+1;
     end
    end
 end
end
%畫出原圖及標出檢測結果
%%%%%%%%%%%%%%%%%%%%%%%%%%開始求PT波段
%對R波點前的波用加窗法。窗體大小為100。然后計算窗體內極大極小的距離
%figure(20);
%plot(Mj4);
%title('j=4 細節系數'); hold on
%%%%%%%還是直接求j=4時的R過零點吧
Mj4posi=Mj4.*(Mj4>0);
%求正極大值的平均
Mj4thposi=(max(Mj4posi(1:round(points/4)))+max(Mj4posi(round(points/4):2*round(points/4)))+max(Mj4posi(2*round(points/4):3*round(points/4)))+max(Mj4posi(3*round(points/4):4*round(points/4))))/4;
Mj4posi=(Mj4posi>Mj4thposi/3);
Mj4nega=Mj4.*(Mj4<0);
%求負極大值的平均
Mj4thnega=(min(Mj4nega(1:round(points/4)))+min(Mj4nega(round(points/4):2*round(points/4)))+min(Mj4nega(2*round(points/4):3*round(points/4)))+min(Mj4nega(3*round(points/4):4*round(points/4))))/4;
Mj4nega=-1*(Mj4nega<Mj4thnega/4);
Mj4interval=Mj4posi+Mj4nega;
Mj4local=find(Mj4interval);
Mj4interva2=zeros(1,points);
for i=1:length(Mj4local)-1
    if abs(Mj4local(i)-Mj4local(i+1))<80
       Mj4diff(i)=Mj4interval(Mj4local(i))-Mj4interval(Mj4local(i+1));
    else
       Mj4diff(i)=0;
    end
end
%找出極值對
Mj4local2=find(Mj4diff==-2);
%負極大值點
Mj4interva2(Mj4local(Mj4local2(1:length(Mj4local2))))=Mj4interval(Mj4local(Mj4local2(1:length(Mj4local2))));
%正極大值點
Mj4interva2(Mj4local(Mj4local2(1:length(Mj4local2))+1))=Mj4interval(Mj4local(Mj4local2(1:length(Mj4local2))+1));
mark1=0;
mark2=0;
mark3=0;
Mj4countR=zeros(1,1);
Mj4countQ=zeros(1,1);
Mj4countS=zeros(1,1);
flag=0;
while i<points
    if Mj4interva2(i)==-1
       mark1=i;
       i=i+1;
       while(i<points&Mj4interva2(i)==0)
          i=i+1;
       end
       mark2=i;
%求極大值對的過零點,在R4中極值之間過零點就是R點。

mark3= round((abs(Mj4(mark2))*mark1+mark2*abs(Mj4(mark1)))/(abs(Mj4(mark2))+abs(Mj4(mark1)))); Mj4countR(mark3)=1; Mj4countQ(mark1)=-1; Mj4countS(mark2)=-1; flag=1; end if flag==1 i=i+200; flag=0; else i=i+1; end end %%%%%%%%%%%%%%%%%%%%%%%%找到MJ4的QRS點后,這里缺少對R點的漏點檢測和冗余檢測。先不去細究了。 %%%%% %%%%%對尺度4下R點檢測不夠好,須要改進的地方 %%%%%% %figure(200); %plot(Mj4); %title('j=4'); %hold on; %plot(Mj4countR,'r'); %plot(Mj4countQ,'g'); %plot(Mj4countS,'g'); %%%%%%%%%%%%%%%%%%%%%%%%%%Mj4過零點找到%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Rlocated=find(Mj4countR); Qlocated=find(Mj4countQ); Slocated=find(Mj4countS); countPMj4=zeros(1,1); countTMj4=zeros(1,1); countP=zeros(1,1); countPbegin=zeros(1,1); countPend=zeros(1,1); countT=zeros(1,1); countTbegin = zeros(1,1); countTend = zeros(1,1); windowSize=100; %%%%%%%%%%%%%%%%%%%%%%%P波檢測%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Rlocated Qlocated 是在尺度4下的坐標 for i=2:length(Rlocated) flag=0; mark4=0; RRinteral=Rlocated(i)-Rlocated(i-1); for j=1:5:(RRinteral*2/3) % windowEnd=Rlocated(i)-30-j; windowEnd=Qlocated(i)-j; windowBegin=windowEnd-windowSize; if windowBegin<Rlocated(i-1)+RRinteral/3 break; end %求窗內的極大極小值 %windowposi=Mj4.*(Mj4>0); %windowthposi=(max(Mj4(windowBegin:windowBegin+windowSize/2))+max(Mj4(windowBegin+windowSize/2+1:windowEnd)))/2; [windowMax,maxindex]=max(Mj4(windowBegin:windowEnd)); [windowMin,minindex]=min(Mj4(windowBegin:windowEnd)); if minindex < maxindex &&((maxindex-minindex)<windowSize*2/3)&&windowMax>0.01&&windowMin<-0.1 flag=1; mark4=round((maxindex+minindex)/2+windowBegin); countPMj4(mark4)=1; countP(mark4-20)=1; countPbegin(windowBegin+minindex-20)=-1; countPend(windowBegin+maxindex-20)=-1; end if flag==1 break; end end if mark4==0&&flag==0 %假設沒有P波,在R波左間隔1/3處賦值-1 mark4=round(Rlocated(i)-RRinteral/3); countP(mark4-20)=-1; end end %plot(countPMj4,'g'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%T波檢測%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear windowBegin windowEnd maxindex minindex windowMax windowMin mark4 RRinteral; windowSizeQ=100; for i=1:length(Rlocated)-1; flag=0; mark5=0; RRinteral=Rlocated(i+1)-Rlocated(i); for j=1:5:(RRinteral*2/3) % windowBegin=Rlocated(i)+30+j; windowBegin=Slocated(i)+j; windowEnd =windowBegin+windowSizeQ; if windowEnd >Rlocated(i+1)-RRinteral/4 break; end %%%%%求窗體內的極大極小值 [windowMax,maxindex]=max(Mj4(windowBegin:windowEnd)); [windowMin,minindex]=min(Mj4(windowBegin:windowEnd)); if minindex < maxindex &&((maxindex-minindex)<windowSizeQ)&&windowMax>0.1&&windowMin<-0.1 flag=1; mark5=round((maxindex+minindex)/2+windowBegin); countTMj4(mark5)=1; countT(mark5-20)=1;%找到T波峰值點 %%%%%確定T波起始點和終點 countTbegin(windowBegin+minindex-20)=-1; countTend(windowBegin+maxindex-20)=-1; end if flag==1 break; end end if mark5==0 %假設沒有T波。在R波右 間隔1/3處賦值-2 mark5=round(Rlocated(i)+ RRinteral/3); countT(mark5)=-2; end end %plot(countTMj4,'g'); %hold off; figure(4); plot(ecgdata(0*points+1:1*points)),grid on,axis tight,axis([1,points,-2,5]); title('ECG信號的各波波段檢測'); hold on plot(countR,'r'); plot(countQ,'k'); plot(countS,'k'); for i=1:Rnum if R_result(i)==0; break end plot(R_result(i),ecgdata(R_result(i)),'bo','MarkerSize',10,'MarkerEdgeColor','g'); end plot(countP,'r'); plot(countT,'r'); plot(countPbegin,'k'); plot(countPend,'k'); plot(countTbegin,'k'); plot(countTend,'k'); hold off




4特征提取

將各波段的位置提取出來后,我們依據15個距離特征與6個幅值特征作為身份識別的特征。詳細信息簡下表:
距離特征:
R-Q R-S R-P
P-PB R-PE R-T
R-TB R-TE PB-PE
TB-TE Q-P S-T
P-T Q-PB S-TE
幅值特征:
Q-R S-R
PB-P P-Q
T-TB T-S


我們將MIT-BIH中的101.dat、103.dat、105.dat、106.dat、111.dat分別取出10個這種特征。當中5個作為訓練樣本、5個作為測試樣本。送入神經網絡進行訓練。


特征提代替碼:
%%%%%%%%%%%%%%%%%%%%%%%%%提取特征向量。進行神經網絡訓練%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%特征向量依據你須要檢測部位的不同,選取特征向量。
%%%%%%%%%%%%%%%本例進行身份識別,選取5組信號,即5個同的人,每組數據採取10例ECG信號,  
%%%%%%%%%%%%%%%提取每例的15個距離特征向量、6個幅值特征向量作為特征數據
%%%%%%%%%%%%%%%距離特征:R-Q R-S R-P R-PBegin R-PEnd R-T R-TBegin R-TEnd
%%%%%%%%%%%%%%% PBegin-PEnd TBegin-TEnd Q-P S-T P-T Q-PBegin S-TEnd
%%%%%%%%%%%%%%%幅值特征: Q-R S-R PBegin-P P-Q T-TBegin T-S
%%%%%%%%%%%%%%每組的10例信號中5個訓練5個測試
%%%%%%%%%%%%%%10組信號取第 2 4 6 8 10 12 14 16 18 20個周期, 2 6 10 14 18訓練,其余測試


%%%%首先找到R Q S P T峰值。 起點 終點 的位置
locatedR=find(countR);
locatedQ=find(countQ);
locatedS=find(countS);
locatedP=find(countP);
locatedPBegin=find(countPbegin);
locatedPEnd=find(countPend);
locatedTBegin=find(countTbegin);
locatedTEnd=find(countTend);
locatedT=find(countT);
%%%%%%初始化各種特征值
RQ=0;RS=0;RP=0;RPB=0;RPE=0;RT=0;RTB=0;RTE=0;
PBPE=0;TBTE=0;QP=0;ST=0;PT=0;QPB=0;STE=0;
ampQR=0;ampSR=0;ampPBP=0;ampPQ=0;ampTTB=0;ampTS=0;
testECG=zeros(5,21);
counttest=1;
trainECG=zeros(5,21);
counttrain=1;
%%%%%%%%%%%%%%%%%開始計算
for i=2:2:20
    %距離特征
    RQ=abs(locatedR(i)-locatedQ(i));
    RS=abs(locatedS(i)-locatedR(i));
    RP=abs(locatedR(i)-locatedP(i-1));
    RPB=abs(locatedR(i)-locatedPBegin(i-1));
    RPE=abs(locatedR(i)-locatedPEnd(i-1));
    RT=abs(locatedR(i)-locatedT(i));
    RTB=abs(locatedR(i)-locatedTBegin(i));
    RTE=abs(locatedR(i)-locatedTEnd(i));
    PBPE=abs(locatedPBegin(i-1)-locatedPEnd(i-1));
    TBTE=abs(locatedTBegin(i)-locatedTEnd(i));
    QP=abs(locatedQ(i)-locatedP(i-1));
    ST=abs(locatedS(i)-locatedT(i));
    PT=abs(locatedP(i-1)-locatedT(i));
    QPB=abs(locatedQ(i)-locatedPBegin(i-1));
    STE=abs(locatedS(i)-locatedTEnd(i));
    %幅值特征
    ampQR=ecgdata(locatedR(i))-ecgdata(locatedQ(i));
    ampSR=ecgdata(locatedR(i))-ecgdata(locatedS(i));
    ampPBP=ecgdata(locatedP(i-1))-ecgdata(locatedPBegin(i-1));
    ampPQ=ecgdata(locatedQ(i))-ecgdata(locatedP(i-1));
    ampTTB=ecgdata(locatedT(i))-ecgdata(locatedTBegin(i));
    ampTS=ecgdata(locatedT(i))-ecgdata(locatedS(i));
    %%%%組成向量,並歸一化
    featureVector=[RQ,RS,RP,RPB,RPE,RT,RTB,RTE,PBPE,TBTE,QP,ST,PT,QPB,STE];
    maxFeature=max(featureVector);
    minFeature=min(featureVector);
    for j=1:length(featureVector)
        featureVector(j)=2*(featureVector(j)-minFeature)/(maxFeature-minFeature)-1;
    end
    amplitudeVector=[ampQR,ampSR,ampPBP,ampPQ,ampTTB,ampTS];
    maxAmplitude=max(amplitudeVector);
    minAmplitued=min(amplitudeVector);
    for j=1:length(amplitudeVector)
        amplitudeVector(j)=2*(amplitudeVector(j)-minAmplitued)/(maxAmplitude-minAmplitued)-1;
    end
    if rem(i,4)==0
        testECG(counttest,:)=[featureVector,amplitudeVector];
        counttest=counttest+1;
    else
        trainECG(counttrain,:)=[featureVector,amplitudeVector];
        counttrain=counttrain+1;
    end
    clear amplitudeVector  featureVector; 
end
save testsample111.mat  testECG
save trainsample111.mat trainECG


5 BP神經網絡訓練與檢測

我相信非常多人對神經網絡比較熟悉了。這里我就不多講了,在matlab中,主要有三個函數。 newff 負責建立網絡, train 負責訓練網絡, sim 負責進行仿真。調整好參數。就能夠進行訓練與測試啦。


詳細代碼例如以下:


clear all;
load testsample101.mat;
test101=testECG;
load testsample103.mat;
test103=testECG;
load testsample105.mat;
test105=testECG;
load testsample106.mat;
test106=testECG;
load testsample111.mat;
test111=testECG;

load trainsample101.mat;
train101=trainECG;
load trainsample103.mat;
train103=trainECG;
load trainsample105.mat;
train105=trainECG;
load trainsample106.mat;
train106=trainECG;
load trainsample111.mat;
train111=trainECG;
%訓練樣本
train_sample=[ train103' train101' train105' train106' train111']; %21*25
%測試樣本
test_sample=[test103' test101' test105' test106' test111'];
%輸出類別
t=[2 2 2 2 2 1 1 1 1 1 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5];
train_result=ind2vec(t);
test_result=ind2vec(t);
pr(1:21,1)=-1;
pr(1:21,2)=1;
net = newff(pr,[21,5],{'tansig' 'purelin'},'traingdx','learngdm');
net.trainParam.epochs=1000;
net.trainParam.goal=0.0002;
net.trainParam.lr=0.0003;
net = train(net,train_sample,train_result);
result_sim=sim(net,test_sample);
result_sim_ind=vec2ind(result_sim);
correct=0;
for i=1:length(t)
    if result_sim_ind(i)==t(i);
        correct=correct+1;
    end
end
disp('正確率:');correct/length(t)



執行結果:正確率為 0.96 左右。效果還不錯。



6: 本次ECG實現的全部代碼與相關原理信息的下載地址(0積分) http://download.csdn.net/detail/yuansanwan123/7530687



希望大家給予批評。有錯誤之處務必指正。最后感謝能夠堅持看到最后的人們!






勉勵自己一句話: 勤學如春起之苗,不見其長。日有所贈;

輟學如磨刀之石,不見其損,日有所虧。

奮斗吧--碗。






 
        
 
        
 
        
 
        
 
        
 
        

版權聲明:本文博客原創文章,博客,未經同意,不得轉載。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM