文件位置為caffe-master/src/caffe/layers/softmax_layer.cpp
這個是一個以前版本的程序,現在的代碼有些不同了,不過可以參考
caffe源碼分析--softmax_layer.cpp
- // Copyright 2013 Yangqing Jia
- //
- #include <algorithm>
- #include <vector>
- #include "caffe/layer.hpp"
- #include "caffe/vision_layers.hpp"
- #include "caffe/util/math_functions.hpp"
- using std::max;
- namespace caffe {
- /**
- * 建立softmax網絡層
- */
- template <typename Dtype>
- void SoftmaxLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom,
- vector<Blob<Dtype>*>* top) {
- CHECK_EQ(bottom.size(), 1) << "Softmax Layer takes a single blob as input.";
- CHECK_EQ(top->size(), 1) << "Softmax Layer takes a single blob as output.";
- //輸出分配空間
- (*top)[0]->Reshape(bottom[0]->num(), bottom[0]->channels(),
- bottom[0]->height(), bottom[0]->width());
- //sum_multiplier_這里都是1,用於輔助計算,可以看作一個行向量,或者行數為1的矩陣
- sum_multiplier_.Reshape(1, bottom[0]->channels(),
- bottom[0]->height(), bottom[0]->width());
- Dtype* multiplier_data = sum_multiplier_.mutable_cpu_data();
- for (int i = 0; i < sum_multiplier_.count(); ++i) {
- multiplier_data[i] = 1.;
- }
- //臨時變量scale_分配空間,大小為num,可以看作一個列向量
- scale_.Reshape(bottom[0]->num(), 1, 1, 1);
- }
- template <typename Dtype>
- void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
- vector<Blob<Dtype>*>* top) {
- const Dtype* bottom_data = bottom[0]->cpu_data();
- Dtype* top_data = (*top)[0]->mutable_cpu_data();
- Dtype* scale_data = scale_.mutable_cpu_data();
- //把輸出看成是num層,每層dim個元素
- int num = bottom[0]->num();
- int dim = bottom[0]->count() / bottom[0]->num();
- memcpy(top_data, bottom_data, sizeof(Dtype) * bottom[0]->count());
- // we need to subtract the max to avoid numerical issues, compute the exp,
- // and then normalize.
- //找出每一層的最大值
- for (int i = 0; i < num; ++i) {
- scale_data[i] = bottom_data[i*dim];
- for (int j = 0; j < dim; ++j) {
- scale_data[i] = max(scale_data[i], bottom_data[i * dim + j]);
- }
- }
- // subtraction 通過矩陣相乘的方式來計算,有num層的top_data,每層元素減去該層的最大值。太巧妙了
- caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, dim, 1, -1.,
- scale_data, sum_multiplier_.cpu_data(), 1., top_data);
- // C = alpha*op( A )*op( B ) + beta*C
- // Perform exponentiation 計算自然對數
- caffe_exp<Dtype>(num * dim, top_data, top_data);
- // sum after exp 每一層各自求和放到scale_data中
- caffe_cpu_gemv<Dtype>(CblasNoTrans, num, dim, 1., top_data,
- sum_multiplier_.cpu_data(), 0., scale_data);
- // Do division 每一層各自除以該層的和
- for (int i = 0; i < num; ++i) {
- caffe_scal<Dtype>(dim, Dtype(1.) / scale_data[i], top_data + i * dim);
- }
- }
- template <typename Dtype>
- Dtype SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
- const bool propagate_down,
- vector<Blob<Dtype>*>* bottom) {
- const Dtype* top_diff = top[0]->cpu_diff();
- const Dtype* top_data = top[0]->cpu_data();
- Dtype* bottom_diff = (*bottom)[0]->mutable_cpu_diff();
- Dtype* scale_data = scale_.mutable_cpu_data();
- int num = top[0]->num();
- int dim = top[0]->count() / top[0]->num();
- memcpy(bottom_diff, top_diff, sizeof(Dtype) * top[0]->count());
- // Compute inner1d(top_diff, top_data) and subtract them from the bottom diff
- for (int i = 0; i < num; ++i) {
- scale_data[i] = caffe_cpu_dot<Dtype>(dim, top_diff + i * dim,
- top_data + i * dim);//每一層,top_diff和top_data計算內積
- }
- // subtraction 每一層bottom_diff的元素減去該層的對應的內積
- caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, dim, 1, -1.,
- scale_data, sum_multiplier_.cpu_data(), 1., bottom_diff);
- // elementwise multiplication 元素各自相乘
- caffe_mul<Dtype>(top[0]->count(), bottom_diff, top_data, bottom_diff);
- return Dtype(0);
- }
- INSTANTIATE_CLASS(SoftmaxLayer);
- } // namespace caffe
本文作者:linger
本文鏈接:http://blog.csdn.net/lingerlanlan/article/details/32700431