[轉] 飄逸的python - 使用圖像匹配SIFT算法進行LOGO檢測


轉自 http://www.itnose.net/detail/6158653.html

 

先上效果圖.

飄逸的python - 使用圖像匹配SIFT算法進行LOGO檢測0

其中飄逸的python - 使用圖像匹配SIFT算法進行LOGO檢測1是logo標識,

飄逸的python - 使用圖像匹配SIFT算法進行LOGO檢測2是待檢測圖片.

#coding=utf-8
import cv2
import scipy as sp

img1 = cv2.imread('x1.jpg',0) # queryImage
img2 = cv2.imread('x2.jpg',0) # trainImage

# Initiate SIFT detector
sift = cv2.SIFT()

# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)

# FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)   # or pass empty dictionary
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)

print 'matches...',len(matches)
# Apply ratio test
good = []
for m,n in matches:
    if m.distance < 0.75*n.distance:
        good.append(m)
print 'good',len(good)
# #####################################
# visualization
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
view = sp.zeros((max(h1, h2), w1 + w2, 3), sp.uint8)
view[:h1, :w1, 0] = img1
view[:h2, w1:, 0] = img2
view[:, :, 1] = view[:, :, 0]
view[:, :, 2] = view[:, :, 0]

for m in good:
    # draw the keypoints
    # print m.queryIdx, m.trainIdx, m.distance
    color = tuple([sp.random.randint(0, 255) for _ in xrange(3)])
    #print 'kp1,kp2',kp1,kp2
    cv2.line(view, (int(kp1[m.queryIdx].pt[0]), int(kp1[m.queryIdx].pt[1])) , (int(kp2[m.trainIdx].pt[0] + w1), int(kp2[m.trainIdx].pt[1])), color)

cv2.imshow("view", view)
cv2.waitKey()

From : http://blog.csdn.net/handsomekang/article/details/41448697


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM