Android so注入-libinject2 簡介、編譯、運行
Android so注入-libinject2 如何實現so注入
Android so注入-Libinject 如何實現so注入
Android so注入掛鈎-Adbi 框架簡介、編譯、運行
Android so注入掛鈎-Adbi 框架如何實現so注入
Android so注入掛鈎-Adbi 框架如何實現so函數掛鈎
Android so注入掛鈎-Adbi 框架如何實現dalvik函數掛鈎
Android dalvik掛鈎-Xposed框架如何實現注入
Android dalvik掛鈎-Xposed框架如何實現掛鈎
上一篇 android hook 框架 libinject 簡介、編譯、運行 實際運行了so的注入並調用了注入so里的一個函數,這篇開始分析其實現。
與之前分析的 abdi 項目一樣,libinject2 也是依賴於linux系統的 ptrace 系統調用。
這個庫首先對ptrace的調用封裝了幾個helper函數
int ptrace_readdata(pid_t pid, uint8_t *src, uint8_t *buf, size_t size) { uint32_t i, j, remain; uint8_t *laddr; union u { long val; // 當以滿4字節讀取內容時,直接使用 long 變量 char chars[sizeof(long)]; // 最后不滿4字節的內容,使用 char 變量 } d; j = size / 4; remain = size % 4; laddr = buf; for (i = 0; i < j; i ++) { d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0); memcpy(laddr, d.chars, 4); src += 4; laddr += 4; } if (remain > 0) { d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0); memcpy(laddr, d.chars, remain); } return 0; }
ptrace_readdata : src 對應 tracee進程指定地址,buf 對應trace進程地址, size 長度。 這個函數從目標進程src地址開始讀size長度內容到本進程的buf內存里。使用 ptrace 函數,第一個參數 PTRACE_PEEKTEXT 實現從 tracee 進程讀取數據。
由於 ptrace 的 peektext 時是以 32位為單位,而 size 是1字節為單位,所以先把 size 轉成 4 字節為單位,依次用 ptrace 讀取,最后剩下的不夠 4字節的余數,依然調用一次 ptrace peektext,然后拷貝實際要的字節數到目標地址。
ptrace_readdata 在 libinject2 里並沒有使用。
int ptrace_writedata(pid_t pid, uint8_t *dest, uint8_t *data, size_t size) { uint32_t i, j, remain; uint8_t *laddr; union u { long val; char chars[sizeof(long)]; } d; j = size / 4; remain = size % 4; laddr = data; for (i = 0; i < j; i ++) { memcpy(d.chars, laddr, 4); ptrace(PTRACE_POKETEXT, pid, dest, d.val); dest += 4; laddr += 4; } if (remain > 0) { d.val = ptrace(PTRACE_PEEKTEXT, pid, dest, 0); for (i = 0; i < remain; i ++) { d.chars[i] = *laddr ++; } ptrace(PTRACE_POKETEXT, pid, dest, d.val); } return 0; }
ptrace_writedata 實現與 ptrace_readdata 相反的功能,將長度為 Size 字節的本進程 data 地址開始的數據,寫入目標進程 Dest 開始的內存。
實際調用的是 ptrace, 第一個參數為 PTRACE_POKETEXT
int ptrace_attach(pid_t pid) { if (ptrace(PTRACE_ATTACH, pid, NULL, 0) < 0) { perror("ptrace_attach"); return -1; } int status = 0; waitpid(pid, &status , WUNTRACED); return 0; } int ptrace_detach(pid_t pid) { if (ptrace(PTRACE_DETACH, pid, NULL, 0) < 0) { perror("ptrace_detach"); return -1; } return 0; }
ptrace_attach 簡單封裝 ptrace+PTRACE_ATTACH + waitpid 的調用,ptrace_detach 簡單封裝 ptrace+PTRACE_DETACH的調用
long ptrace_retval(struct pt_regs * regs) // 獲取函數調用的返回值 { #if defined(__arm__) return regs->ARM_r0; #elif defined(__i386__) return regs->eax; #else #error "Not supported" #endif } long ptrace_ip(struct pt_regs * regs) //獲取程序計數器 { #if defined(__arm__) return regs->ARM_pc; #elif defined(__i386__) return regs->eip; #else #error "Not supported" #endif } int ptrace_call_wrapper(pid_t target_pid, const char * func_name, void * func_addr, long * parameters, int param_num, struct pt_regs * regs) { DEBUG_PRINT("[+] Calling %s in target process.\n", func_name); if (ptrace_call(target_pid, (uint32_t)func_addr, parameters, param_num, regs) == -1) return -1; if (ptrace_getregs(target_pid, regs) == -1) return -1; DEBUG_PRINT("[+] Target process returned from %s, return value=%x, pc=%x \n", func_name, ptrace_retval(regs), ptrace_ip(regs)); return 0; }
ptrace_call_wrapper 封裝了trace進程調用tracee進程內函數的方法,tracee進程內要調用的函數地址用參數 func_addr 存放,func_addr的參數和參數個數由 parameters 和 param_num 指定。
調用完后tracee進程的寄存器內存獲取並存放在 regs 變量里。
下面先了解下 struct pt_regs 結構,
這個結構封裝了需要在內核入口中保存的最少的狀態信息,比如說每一次的系統調用、中斷、陷阱、故障時,pt_regs結構中保存了最少的狀態信息,是一個數組,為了方便使用,定義了一系列寄存器宏指向數組的某一項, 使用 ptrace+PTRACE_GETREGS 可以獲取目標進程的寄存器值,以 struct pt_regs 變量返回。
pt_regs結構:
/*
* This struct defines the way the registers are stored on the
* stack during a system call. Note that sizeof(struct pt_regs)
* has to be a multiple of 8.
*/ #ifndef __KERNEL__ struct pt_regs { long uregs[18]; }; #else /* __KERNEL__ */ struct pt_regs { unsigned long uregs[18]; }; #endif /* __KERNEL__ */ #define ARM_cpsr uregs[16] #define ARM_pc uregs[15] #define ARM_lr uregs[14] #define ARM_sp uregs[13] #define ARM_ip uregs[12] #define ARM_fp uregs[11] #define ARM_r10 uregs[10] #define ARM_r9 uregs[9] #define ARM_r8 uregs[8] #define ARM_r7 uregs[7] #define ARM_r6 uregs[6] #define ARM_r5 uregs[5] #define ARM_r4 uregs[4] #define ARM_r3 uregs[3] #define ARM_r2 uregs[2] #define ARM_r1 uregs[1] #define ARM_r0 uregs[0] #define ARM_ORIG_r0 uregs[17]
ptrace_getregs 的實現如下,
int ptrace_getregs(pid_t pid, struct pt_regs * regs) { if (ptrace(PTRACE_GETREGS, pid, NULL, regs) < 0) { perror("ptrace_getregs: Can not get register values"); return -1; } return 0; } int ptrace_setregs(pid_t pid, struct pt_regs * regs) { if (ptrace(PTRACE_SETREGS, pid, NULL, regs) < 0) { perror("ptrace_setregs: Can not set register values"); return -1; } return 0; } int ptrace_continue(pid_t pid) { if (ptrace(PTRACE_CONT, pid, NULL, 0) < 0) { perror("ptrace_cont"); return -1; } return 0; }
ptrace_call 的實現如下:
#if defined(__arm__)
int ptrace_call(pid_t pid, uint32_t addr, long *params, uint32_t num_params, struct pt_regs* regs) { uint32_t i; for (i = 0; i < num_params && i < 4; i ++) { // 前面4個參數存放到寄存器里,pt_regs數組的 0,1,2,4 四個位置 regs->uregs[i] = params[i]; } // if (i < num_params) { //多於4個的參數,存放在目標進程的棧里
regs->ARM_sp -= (num_params - i) * sizeof(long) ; // 棧頂指針 ARM_sp 往低地址移動剩余參數的地址數
ptrace_writedata(pid, (void *)regs->ARM_sp, (uint8_t *)¶ms[i], (num_params - i) * sizeof(long));// 使用ptrace_writedata向目標進程的棧 //寫入剩余參數的值
} regs->ARM_pc = addr; // 要在目標進程調用的函數地址寫入目標進程PC寄存器 if (regs->ARM_pc & 1) { // 16位的 thumb 格式 /* thumb */ regs->ARM_pc &= (~1u); regs->ARM_cpsr |= CPSR_T_MASK; // #define CPSR_T_MASK ( 1u << 5 ) } else { // arm 格式 /* arm */ regs->ARM_cpsr &= ~CPSR_T_MASK; } regs->ARM_lr = 0; if (ptrace_setregs(pid, regs) == -1 // 將構造好的寄存器內容寫入目標進程 || ptrace_continue(pid) == -1) { // 恢復目標進程的運行,目標進程將從上述pc寄存器即addr函數開始運行 printf("error\n"); return -1; } int stat = 0; waitpid(pid, &stat, WUNTRACED); while (stat != 0xb7f) { // 這幾句沒看懂 if (ptrace_continue(pid) == -1) { printf("error\n"); return -1; } waitpid(pid, &stat, WUNTRACED); } return 0; }
#endif
下面這個函數實現了獲取目標進程加載的動態庫內部函數的地址,與 adbi 的原理一致,都是利用函數與動態庫加載進內存的起始地址的offset一致,來計算的,個人覺得 libinject 在實現同樣的功能時代碼給 adbi 寫得更舒服,這也是研究各種源碼的好處,有對比才有高低。
void* get_module_base(pid_t pid, const char* module_name) // 這個函數獲取動態庫 module_name 加載在進程 pid 后的起始地址 { FILE *fp; long addr = 0; char *pch; char filename[32]; char line[1024]; if (pid < 0) { /* self process */ snprintf(filename, sizeof(filename), "/proc/self/maps", pid); // 同樣是通過解析 maps 文件得到的 } else { snprintf(filename, sizeof(filename), "/proc/%d/maps", pid); } fp = fopen(filename, "r"); if (fp != NULL) { while (fgets(line, sizeof(line), fp)) { if (strstr(line, module_name)) { pch = strtok( line, "-" ); addr = strtoul( pch, NULL, 16 ); if (addr == 0x8000) addr = 0; break; } } fclose(fp) ; } return (void *)addr; } void* get_remote_addr(pid_t target_pid, const char* module_name, void* local_addr) // 這個函數獲取目標進程內某個動態庫函數的地址 { void* local_handle, *remote_handle; local_handle = get_module_base(-1, module_name); remote_handle = get_module_base(target_pid, module_name); DEBUG_PRINT("[+] get_remote_addr: local[%x], remote[%x]\n", local_handle, remote_handle); void * ret_addr = (void *)((uint32_t)local_addr + (uint32_t)remote_handle - (uint32_t)local_handle);// 算法一致, local_addr - local_handle 得到 // offset, 然后再加上 remote_handle, 即得到目標進程的函數地址 return ret_addr; }
以上函數基本上是helper函數,主要是封裝了ptrace的調用實現一系列讀寫目標進程內存、寄存器的函數,並且封裝了通過解析maps文件讀取目標進程動態庫里函數的地址的函數。
下面這個是 libinject2 的核心函數,實現了注入功能:
int inject_remote_process(pid_t target_pid, const char *library_path, const char *function_name, const char *param, size_t param_size) { int ret = -1; void *mmap_addr, *dlopen_addr, *dlsym_addr, *dlclose_addr, *dlerror_addr; // 存放目標進程相應函數的地址 void *local_handle, *remote_handle, *dlhandle; uint8_t *map_base = 0; // 存放目標進程mmap獲取的內存塊的地址 uint8_t *dlopen_param1_ptr, *dlsym_param2_ptr, *saved_r0_pc_ptr, *inject_param_ptr, *remote_code_ptr, *local_code_ptr; struct pt_regs regs; struct pt_regs original_regs; uint32_t code_length; long parameters[10]; DEBUG_PRINT("[+] Injecting process: %d\n", target_pid); if (ptrace_attach(target_pid) == -1) // 第一步: attach 到目標進程 goto exit; if (ptrace_getregs(target_pid, ®s) == -1) goto exit; /* save original registers */ memcpy(&original_regs, ®s, sizeof(regs)); // 第二步:保存目標進程被注入前的寄存器內容,方便注入完成后恢復 mmap_addr = get_remote_addr(target_pid, libc_path, (void *)mmap); DEBUG_PRINT("[+] Remote mmap address: %x\n", mmap_addr); /* call mmap */ parameters[0] = 0; // addr parameters[1] = 0x4000; // size parameters[2] = PROT_READ | PROT_WRITE | PROT_EXEC; // prot parameters[3] = MAP_ANONYMOUS | MAP_PRIVATE; // flags parameters[4] = 0; //fd parameters[5] = 0; //offset if (ptrace_call_wrapper(target_pid, "mmap", mmap_addr, parameters, 6, ®s) == -1) goto exit; map_base = ptrace_retval(®s); // 第三步,獲取目標進程mmap調用的地址,並執行mmap調用,在目標進程分配一塊地址,用於存放后面要注入的庫路徑和相關函數地址等 dlopen_addr = get_remote_addr( target_pid, linker_path, (void *)dlopen ); dlsym_addr = get_remote_addr( target_pid, linker_path, (void *)dlsym ); dlclose_addr = get_remote_addr( target_pid, linker_path, (void *)dlclose ); dlerror_addr = get_remote_addr( target_pid, linker_path, (void *)dlerror ); DEBUG_PRINT("[+] Get imports: dlopen: %x, dlsym: %x, dlclose: %x, dlerror: %x\n", dlopen_addr, dlsym_addr, dlclose_addr, dlerror_addr); printf("library path = %s\n", library_path); ptrace_writedata(target_pid, map_base, library_path, strlen(library_path) + 1);// 第四步,獲取目標進程動態庫的幾個函數,並將要注入的so的路徑寫入剛剛申請的內存的初始地址 parameters[0] = map_base; parameters[1] = RTLD_NOW| RTLD_GLOBAL; if (ptrace_call_wrapper(target_pid, "dlopen", dlopen_addr, parameters, 2, ®s) == -1) goto exit; void * sohandle = ptrace_retval(®s); // 第五步,在目標進程內調用 dlopen函數加載要注入的 so ,這一步成功后,so已經被注入目標進程的地址空間內了 #define FUNCTION_NAME_ADDR_OFFSET 0x100 ptrace_writedata(target_pid, map_base + FUNCTION_NAME_ADDR_OFFSET, function_name, strlen(function_name) + 1); parameters[0] = sohandle; parameters[1] = map_base + FUNCTION_NAME_ADDR_OFFSET; if (ptrace_call_wrapper(target_pid, "dlsym", dlsym_addr, parameters, 2, ®s) == -1) goto exit; void * hook_entry_addr = ptrace_retval(®s); DEBUG_PRINT("hook_entry_addr = %p\n", hook_entry_addr); // 第六步,在目標進程內調用 dlsym函數獲取剛剛注入的so里的hook函數 #define FUNCTION_PARAM_ADDR_OFFSET 0x200 ptrace_writedata(target_pid, map_base + FUNCTION_PARAM_ADDR_OFFSET, param, strlen(param) + 1); parameters[0] = map_base + FUNCTION_PARAM_ADDR_OFFSET; if (ptrace_call_wrapper(target_pid, "hook_entry", hook_entry_addr, parameters, 1, ®s) == -1) goto exit; printf("Press enter to dlclose and detach\n"); // 第七步,在目標進程內調用hook函數 getchar(); parameters[0] = sohandle; if (ptrace_call_wrapper(target_pid, "dlclose", dlclose, parameters, 1, ®s) == -1) goto exit; /* restore */ ptrace_setregs(target_pid, &original_regs); ptrace_detach(target_pid); // 第八步,恢復目標進程的寄存器,detach 退出對目標進程的 ptrace ret = 0; exit: return ret; }
最后是main函數,libinject2 只是注入了一個So到目標進程,並執行了so里的一個函數,還沒有真正劫持目標進程的函數
int main(int argc, char** argv) { pid_t target_pid; //target_pid = find_pid_of("/system/bin/surfaceflinger"); target_pid = atoi(argv[1]); if (-1 == target_pid) { printf("Can't find the process\n"); return -1; } //target_pid = find_pid_of("/data/test"); inject_remote_process(target_pid, "/data/local/tmp/libhello.so", "hook_entry", "I'm parameter!", strlen("I'm parameter!")); return 0; }
完整的libinject.c:
#include <stdio.h> #include <stdlib.h> //#include <asm/user.h> #include <asm/ptrace.h> #include <sys/ptrace.h> #include <sys/wait.h> #include <sys/mman.h> #include <dlfcn.h> #include <dirent.h> #include <unistd.h> #include <string.h> #include <elf.h> #include <android/log.h> #define __arm__ 1 #if defined(__i386__) //#define pt_regs user_regs_struct #endif #define ENABLE_DEBUG 1 #if ENABLE_DEBUG #define LOG_TAG "INJECT" #define LOGD(fmt, args...) __android_log_print(ANDROID_LOG_DEBUG,LOG_TAG, fmt, ##args) #define DEBUG_PRINT(format,args...) \ LOGD(format, ##args) #else #define DEBUG_PRINT(format,args...) #endif #define CPSR_T_MASK ( 1u << 5 ) const char *libc_path = "/system/lib/libc.so"; const char *linker_path = "/system/bin/linker"; int ptrace_readdata(pid_t pid, uint8_t *src, uint8_t *buf, size_t size) { uint32_t i, j, remain; uint8_t *laddr; union u { long val; char chars[sizeof(long)]; } d; j = size / 4; remain = size % 4; laddr = buf; for (i = 0; i < j; i ++) { d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0); memcpy(laddr, d.chars, 4); src += 4; laddr += 4; } if (remain > 0) { d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0); memcpy(laddr, d.chars, remain); } return 0; } int ptrace_writedata(pid_t pid, uint8_t *dest, uint8_t *data, size_t size) { uint32_t i, j, remain; uint8_t *laddr; union u { long val; char chars[sizeof(long)]; } d; j = size / 4; remain = size % 4; laddr = data; for (i = 0; i < j; i ++) { memcpy(d.chars, laddr, 4); ptrace(PTRACE_POKETEXT, pid, dest, d.val); dest += 4; laddr += 4; } if (remain > 0) { d.val = ptrace(PTRACE_PEEKTEXT, pid, dest, 0); for (i = 0; i < remain; i ++) { d.chars[i] = *laddr ++; } ptrace(PTRACE_POKETEXT, pid, dest, d.val); } return 0; } #if defined(__arm__) int ptrace_call(pid_t pid, uint32_t addr, long *params, uint32_t num_params, struct pt_regs* regs) { uint32_t i; for (i = 0; i < num_params && i < 4; i ++) { regs->uregs[i] = params[i]; } // // push remained params onto stack // if (i < num_params) { regs->ARM_sp -= (num_params - i) * sizeof(long) ; ptrace_writedata(pid, (void *)regs->ARM_sp, (uint8_t *)¶ms[i], (num_params - i) * sizeof(long)); } regs->ARM_pc = addr; if (regs->ARM_pc & 1) { /* thumb */ regs->ARM_pc &= (~1u); regs->ARM_cpsr |= CPSR_T_MASK; } else { /* arm */ regs->ARM_cpsr &= ~CPSR_T_MASK; } regs->ARM_lr = 0; if (ptrace_setregs(pid, regs) == -1 || ptrace_continue(pid) == -1) { printf("error\n"); return -1; } int stat = 0; waitpid(pid, &stat, WUNTRACED); while (stat != 0xb7f) { if (ptrace_continue(pid) == -1) { printf("error\n"); return -1; } waitpid(pid, &stat, WUNTRACED); } return 0; } #elif defined(__i386__) #if 0 long ptrace_call(pid_t pid, uint32_t addr, long *params, uint32_t num_params, struct user_regs_struct * regs) { regs->esp -= (num_params) * sizeof(long) ; ptrace_writedata(pid, (void *)regs->esp, (uint8_t *)params, (num_params) * sizeof(long)); long tmp_addr = 0x00; regs->esp -= sizeof(long); ptrace_writedata(pid, regs->esp, (char *)&tmp_addr, sizeof(tmp_addr)); regs->eip = addr; if (ptrace_setregs(pid, regs) == -1 || ptrace_continue( pid) == -1) { printf("error\n"); return -1; } int stat = 0; waitpid(pid, &stat, WUNTRACED); while (stat != 0xb7f) { if (ptrace_continue(pid) == -1) { printf("error\n"); return -1; } waitpid(pid, &stat, WUNTRACED); } return 0; } #endif #else #error "Not supported" #endif int ptrace_getregs(pid_t pid, struct pt_regs * regs) { if (ptrace(PTRACE_GETREGS, pid, NULL, regs) < 0) { perror("ptrace_getregs: Can not get register values"); return -1; } return 0; } int ptrace_setregs(pid_t pid, struct pt_regs * regs) { if (ptrace(PTRACE_SETREGS, pid, NULL, regs) < 0) { perror("ptrace_setregs: Can not set register values"); return -1; } return 0; } int ptrace_continue(pid_t pid) { if (ptrace(PTRACE_CONT, pid, NULL, 0) < 0) { perror("ptrace_cont"); return -1; } return 0; } int ptrace_attach(pid_t pid) { if (ptrace(PTRACE_ATTACH, pid, NULL, 0) < 0) { perror("ptrace_attach"); return -1; } int status = 0; waitpid(pid, &status , WUNTRACED); return 0; } int ptrace_detach(pid_t pid) { if (ptrace(PTRACE_DETACH, pid, NULL, 0) < 0) { perror("ptrace_detach"); return -1; } return 0; } void* get_module_base(pid_t pid, const char* module_name) { FILE *fp; long addr = 0; char *pch; char filename[32]; char line[1024]; if (pid < 0) { /* self process */ snprintf(filename, sizeof(filename), "/proc/self/maps", pid); } else { snprintf(filename, sizeof(filename), "/proc/%d/maps", pid); } fp = fopen(filename, "r"); if (fp != NULL) { while (fgets(line, sizeof(line), fp)) { if (strstr(line, module_name)) { pch = strtok( line, "-" ); addr = strtoul( pch, NULL, 16 ); if (addr == 0x8000) addr = 0; break; } } fclose(fp) ; } return (void *)addr; } void* get_remote_addr(pid_t target_pid, const char* module_name, void* local_addr) { void* local_handle, *remote_handle; local_handle = get_module_base(-1, module_name); remote_handle = get_module_base(target_pid, module_name); DEBUG_PRINT("[+] get_remote_addr: local[%x], remote[%x]\n", local_handle, remote_handle); void * ret_addr = (void *)((uint32_t)local_addr + (uint32_t)remote_handle - (uint32_t)local_handle); #if defined(__i386__) if (!strcmp(module_name, libc_path)) { ret_addr += 2; } #endif return ret_addr; } int find_pid_of(const char *process_name) { int id; pid_t pid = -1; DIR* dir; FILE *fp; char filename[32]; char cmdline[256]; struct dirent * entry; if (process_name == NULL) return -1; dir = opendir("/proc"); if (dir == NULL) return -1; while((entry = readdir(dir)) != NULL) { id = atoi(entry->d_name); if (id != 0) { sprintf(filename, "/proc/%d/cmdline", id); fp = fopen(filename, "r"); if (fp) { fgets(cmdline, sizeof(cmdline), fp); fclose(fp); if (strcmp(process_name, cmdline) == 0) { /* process found */ pid = id; break; } } } } closedir(dir); return pid; } long ptrace_retval(struct pt_regs * regs) { #if defined(__arm__) return regs->ARM_r0; #elif defined(__i386__) //return regs->eax; #else #error "Not supported" #endif } long ptrace_ip(struct pt_regs * regs) { #if defined(__arm__) return regs->ARM_pc; #elif defined(__i386__) //return regs->eip; #else #error "Not supported" #endif } int ptrace_call_wrapper(pid_t target_pid, const char * func_name, void * func_addr, long * parameters, int param_num, struct pt_regs * regs) { DEBUG_PRINT("[+] Calling %s in target process.\n", func_name); if (ptrace_call(target_pid, (uint32_t)func_addr, parameters, param_num, regs) == -1) return -1; if (ptrace_getregs(target_pid, regs) == -1) return -1; DEBUG_PRINT("[+] Target process returned from %s, return value=%x, pc=%x \n", func_name, ptrace_retval(regs), ptrace_ip(regs)); return 0; } int inject_remote_process(pid_t target_pid, const char *library_path, const char *function_name, const char *param, size_t param_size) { int ret = -1; void *mmap_addr, *dlopen_addr, *dlsym_addr, *dlclose_addr, *dlerror_addr; void *local_handle, *remote_handle, *dlhandle; uint8_t *map_base = 0; uint8_t *dlopen_param1_ptr, *dlsym_param2_ptr, *saved_r0_pc_ptr, *inject_param_ptr, *remote_code_ptr, *local_code_ptr; struct pt_regs regs; struct pt_regs original_regs; extern uint32_t _dlopen_addr_s, _dlopen_param1_s, _dlopen_param2_s, _dlsym_addr_s, \ _dlsym_param2_s, _dlclose_addr_s, _inject_start_s, _inject_end_s, _inject_function_param_s, \ _saved_cpsr_s, _saved_r0_pc_s; uint32_t code_length; long parameters[10]; DEBUG_PRINT("[+] Injecting process: %d\n", target_pid); if (ptrace_attach(target_pid) == -1){ DEBUG_PRINT("[+] ptrace_attach fail: %d\n", target_pid); goto exit; } if (ptrace_getregs(target_pid, ®s) == -1){ DEBUG_PRINT("[+] ptrace_getregs fail: %d\n", target_pid); goto exit; } /* save original registers */ memcpy(&original_regs, ®s, sizeof(regs)); mmap_addr = get_remote_addr(target_pid, libc_path, (void *)mmap); DEBUG_PRINT("[+] Remote mmap address: %x\n", mmap_addr); /* call mmap */ parameters[0] = 0; // addr parameters[1] = 0x4000; // size parameters[2] = PROT_READ | PROT_WRITE | PROT_EXEC; // prot parameters[3] = MAP_ANONYMOUS | MAP_PRIVATE; // flags parameters[4] = 0; //fd parameters[5] = 0; //offset if (ptrace_call_wrapper(target_pid, "mmap", mmap_addr, parameters, 6, ®s) == -1){ DEBUG_PRINT("[+] ptrace_call_wrapper fail: %d\n", target_pid); goto exit; } map_base = ptrace_retval(®s); dlopen_addr = get_remote_addr( target_pid, linker_path, (void *)dlopen ); dlsym_addr = get_remote_addr( target_pid, linker_path, (void *)dlsym ); dlclose_addr = get_remote_addr( target_pid, linker_path, (void *)dlclose ); dlerror_addr = get_remote_addr( target_pid, linker_path, (void *)dlerror ); DEBUG_PRINT("[+] Get imports: dlopen: %x, dlsym: %x, dlclose: %x, dlerror: %x\n", dlopen_addr, dlsym_addr, dlclose_addr, dlerror_addr); printf("library path = %s\n", library_path); ptrace_writedata(target_pid, map_base, library_path, strlen(library_path) + 1); parameters[0] = map_base; parameters[1] = RTLD_NOW| RTLD_GLOBAL; if (ptrace_call_wrapper(target_pid, "dlopen", dlopen_addr, parameters, 2, ®s) == -1) goto exit; void * sohandle = ptrace_retval(®s); if(NULL == sohandle) { if (ptrace_call_wrapper(target_pid, "dlerror", dlerror_addr, parameters, 0, ®s) == -1) goto exit; char * errstr = ptrace_retval(®s); uint8_t buf[1024]={0}; ptrace_readdata(target_pid, errstr,buf,256); DEBUG_PRINT("[+] dlopen return error: %s\n", buf); } #define FUNCTION_NAME_ADDR_OFFSET 0x100 ptrace_writedata(target_pid, map_base + FUNCTION_NAME_ADDR_OFFSET, function_name, strlen(function_name) + 1); parameters[0] = sohandle; parameters[1] = map_base + FUNCTION_NAME_ADDR_OFFSET; if (ptrace_call_wrapper(target_pid, "dlsym", dlsym_addr, parameters, 2, ®s) == -1) goto exit; void * hook_entry_addr = ptrace_retval(®s); DEBUG_PRINT("hook_entry_addr = %p\n", hook_entry_addr); #define FUNCTION_PARAM_ADDR_OFFSET 0x200 ptrace_writedata(target_pid, map_base + FUNCTION_PARAM_ADDR_OFFSET, param, strlen(param) + 1); parameters[0] = map_base + FUNCTION_PARAM_ADDR_OFFSET; if (ptrace_call_wrapper(target_pid, "hook_entry", hook_entry_addr, parameters, 1, ®s) == -1) goto exit; // printf("Press enter to dlclose and detach\n"); printf("Press enter to detach\n"); getchar(); #if 0 parameters[0] = sohandle; if (ptrace_call_wrapper(target_pid, "dlclose", dlclose, parameters, 1, ®s) == -1) goto exit; #endif /* restore */ ptrace_setregs(target_pid, &original_regs); ptrace_detach(target_pid); ret = 0; exit: return ret; } #define HELPSTR "error usage: %s -p PID [-P PROCNAME] -l LIBNAME -f FUNCTION [-d (debug on)]\n" int main(int argc, char** argv) { pid_t target_pid = -1; char *proc_name = NULL; char *sodir = NULL; char *func_name = NULL; char *args = ""; int opt; while ((opt = getopt(argc, argv, "p:l:f:P:")) != -1) { switch (opt) { case 'p': target_pid = strtol(optarg, NULL, 0); break; case 'l': sodir = strdup(optarg); break; case 'f': func_name = strdup(optarg); break; case 'P': proc_name = strdup(optarg); break; default: fprintf(stderr,HELPSTR,argv[0]); exit(0); } } if(proc_name != NULL && target_pid < 0) target_pid = find_pid_of(proc_name); if(target_pid < 0 || NULL == sodir || NULL == func_name) { fprintf(stderr,HELPSTR,argv[0]); exit(0); } if(argc>4) args=argv[4]; inject_remote_process(target_pid, sodir, func_name, args, strlen(args)); return 0; }