Android so注入-libinject2 简介、编译、运行
Android so注入-libinject2 如何实现so注入
Android so注入-Libinject 如何实现so注入
Android so注入挂钩-Adbi 框架简介、编译、运行
Android so注入挂钩-Adbi 框架如何实现so注入
Android so注入挂钩-Adbi 框架如何实现so函数挂钩
Android so注入挂钩-Adbi 框架如何实现dalvik函数挂钩
Android dalvik挂钩-Xposed框架如何实现注入
Android dalvik挂钩-Xposed框架如何实现挂钩
上一篇 android hook 框架 libinject 简介、编译、运行 实际运行了so的注入并调用了注入so里的一个函数,这篇开始分析其实现。
与之前分析的 abdi 项目一样,libinject2 也是依赖于linux系统的 ptrace 系统调用。
这个库首先对ptrace的调用封装了几个helper函数
int ptrace_readdata(pid_t pid, uint8_t *src, uint8_t *buf, size_t size) { uint32_t i, j, remain; uint8_t *laddr; union u { long val; // 当以满4字节读取内容时,直接使用 long 变量 char chars[sizeof(long)]; // 最后不满4字节的内容,使用 char 变量 } d; j = size / 4; remain = size % 4; laddr = buf; for (i = 0; i < j; i ++) { d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0); memcpy(laddr, d.chars, 4); src += 4; laddr += 4; } if (remain > 0) { d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0); memcpy(laddr, d.chars, remain); } return 0; }
ptrace_readdata : src 对应 tracee进程指定地址,buf 对应trace进程地址, size 长度。 这个函数从目标进程src地址开始读size长度内容到本进程的buf内存里。使用 ptrace 函数,第一个参数 PTRACE_PEEKTEXT 实现从 tracee 进程读取数据。
由于 ptrace 的 peektext 时是以 32位为单位,而 size 是1字节为单位,所以先把 size 转成 4 字节为单位,依次用 ptrace 读取,最后剩下的不够 4字节的余数,依然调用一次 ptrace peektext,然后拷贝实际要的字节数到目标地址。
ptrace_readdata 在 libinject2 里并没有使用。
int ptrace_writedata(pid_t pid, uint8_t *dest, uint8_t *data, size_t size) { uint32_t i, j, remain; uint8_t *laddr; union u { long val; char chars[sizeof(long)]; } d; j = size / 4; remain = size % 4; laddr = data; for (i = 0; i < j; i ++) { memcpy(d.chars, laddr, 4); ptrace(PTRACE_POKETEXT, pid, dest, d.val); dest += 4; laddr += 4; } if (remain > 0) { d.val = ptrace(PTRACE_PEEKTEXT, pid, dest, 0); for (i = 0; i < remain; i ++) { d.chars[i] = *laddr ++; } ptrace(PTRACE_POKETEXT, pid, dest, d.val); } return 0; }
ptrace_writedata 实现与 ptrace_readdata 相反的功能,将长度为 Size 字节的本进程 data 地址开始的数据,写入目标进程 Dest 开始的内存。
实际调用的是 ptrace, 第一个参数为 PTRACE_POKETEXT
int ptrace_attach(pid_t pid) { if (ptrace(PTRACE_ATTACH, pid, NULL, 0) < 0) { perror("ptrace_attach"); return -1; } int status = 0; waitpid(pid, &status , WUNTRACED); return 0; } int ptrace_detach(pid_t pid) { if (ptrace(PTRACE_DETACH, pid, NULL, 0) < 0) { perror("ptrace_detach"); return -1; } return 0; }
ptrace_attach 简单封装 ptrace+PTRACE_ATTACH + waitpid 的调用,ptrace_detach 简单封装 ptrace+PTRACE_DETACH的调用
long ptrace_retval(struct pt_regs * regs) // 获取函数调用的返回值 { #if defined(__arm__) return regs->ARM_r0; #elif defined(__i386__) return regs->eax; #else #error "Not supported" #endif } long ptrace_ip(struct pt_regs * regs) //获取程序计数器 { #if defined(__arm__) return regs->ARM_pc; #elif defined(__i386__) return regs->eip; #else #error "Not supported" #endif } int ptrace_call_wrapper(pid_t target_pid, const char * func_name, void * func_addr, long * parameters, int param_num, struct pt_regs * regs) { DEBUG_PRINT("[+] Calling %s in target process.\n", func_name); if (ptrace_call(target_pid, (uint32_t)func_addr, parameters, param_num, regs) == -1) return -1; if (ptrace_getregs(target_pid, regs) == -1) return -1; DEBUG_PRINT("[+] Target process returned from %s, return value=%x, pc=%x \n", func_name, ptrace_retval(regs), ptrace_ip(regs)); return 0; }
ptrace_call_wrapper 封装了trace进程调用tracee进程内函数的方法,tracee进程内要调用的函数地址用参数 func_addr 存放,func_addr的参数和参数个数由 parameters 和 param_num 指定。
调用完后tracee进程的寄存器内存获取并存放在 regs 变量里。
下面先了解下 struct pt_regs 结构,
这个结构封装了需要在内核入口中保存的最少的状态信息,比如说每一次的系统调用、中断、陷阱、故障时,pt_regs结构中保存了最少的状态信息,是一个数组,为了方便使用,定义了一系列寄存器宏指向数组的某一项, 使用 ptrace+PTRACE_GETREGS 可以获取目标进程的寄存器值,以 struct pt_regs 变量返回。
pt_regs结构:
/*
* This struct defines the way the registers are stored on the
* stack during a system call. Note that sizeof(struct pt_regs)
* has to be a multiple of 8.
*/ #ifndef __KERNEL__ struct pt_regs { long uregs[18]; }; #else /* __KERNEL__ */ struct pt_regs { unsigned long uregs[18]; }; #endif /* __KERNEL__ */ #define ARM_cpsr uregs[16] #define ARM_pc uregs[15] #define ARM_lr uregs[14] #define ARM_sp uregs[13] #define ARM_ip uregs[12] #define ARM_fp uregs[11] #define ARM_r10 uregs[10] #define ARM_r9 uregs[9] #define ARM_r8 uregs[8] #define ARM_r7 uregs[7] #define ARM_r6 uregs[6] #define ARM_r5 uregs[5] #define ARM_r4 uregs[4] #define ARM_r3 uregs[3] #define ARM_r2 uregs[2] #define ARM_r1 uregs[1] #define ARM_r0 uregs[0] #define ARM_ORIG_r0 uregs[17]
ptrace_getregs 的实现如下,
int ptrace_getregs(pid_t pid, struct pt_regs * regs) { if (ptrace(PTRACE_GETREGS, pid, NULL, regs) < 0) { perror("ptrace_getregs: Can not get register values"); return -1; } return 0; } int ptrace_setregs(pid_t pid, struct pt_regs * regs) { if (ptrace(PTRACE_SETREGS, pid, NULL, regs) < 0) { perror("ptrace_setregs: Can not set register values"); return -1; } return 0; } int ptrace_continue(pid_t pid) { if (ptrace(PTRACE_CONT, pid, NULL, 0) < 0) { perror("ptrace_cont"); return -1; } return 0; }
ptrace_call 的实现如下:
#if defined(__arm__)
int ptrace_call(pid_t pid, uint32_t addr, long *params, uint32_t num_params, struct pt_regs* regs) { uint32_t i; for (i = 0; i < num_params && i < 4; i ++) { // 前面4个参数存放到寄存器里,pt_regs数组的 0,1,2,4 四个位置 regs->uregs[i] = params[i]; } // if (i < num_params) { //多于4个的参数,存放在目标进程的栈里
regs->ARM_sp -= (num_params - i) * sizeof(long) ; // 栈顶指针 ARM_sp 往低地址移动剩余参数的地址数
ptrace_writedata(pid, (void *)regs->ARM_sp, (uint8_t *)¶ms[i], (num_params - i) * sizeof(long));// 使用ptrace_writedata向目标进程的栈 //写入剩余参数的值
} regs->ARM_pc = addr; // 要在目标进程调用的函数地址写入目标进程PC寄存器 if (regs->ARM_pc & 1) { // 16位的 thumb 格式 /* thumb */ regs->ARM_pc &= (~1u); regs->ARM_cpsr |= CPSR_T_MASK; // #define CPSR_T_MASK ( 1u << 5 ) } else { // arm 格式 /* arm */ regs->ARM_cpsr &= ~CPSR_T_MASK; } regs->ARM_lr = 0; if (ptrace_setregs(pid, regs) == -1 // 将构造好的寄存器内容写入目标进程 || ptrace_continue(pid) == -1) { // 恢复目标进程的运行,目标进程将从上述pc寄存器即addr函数开始运行 printf("error\n"); return -1; } int stat = 0; waitpid(pid, &stat, WUNTRACED); while (stat != 0xb7f) { // 这几句没看懂 if (ptrace_continue(pid) == -1) { printf("error\n"); return -1; } waitpid(pid, &stat, WUNTRACED); } return 0; }
#endif
下面这个函数实现了获取目标进程加载的动态库内部函数的地址,与 adbi 的原理一致,都是利用函数与动态库加载进内存的起始地址的offset一致,来计算的,个人觉得 libinject 在实现同样的功能时代码给 adbi 写得更舒服,这也是研究各种源码的好处,有对比才有高低。
void* get_module_base(pid_t pid, const char* module_name) // 这个函数获取动态库 module_name 加载在进程 pid 后的起始地址 { FILE *fp; long addr = 0; char *pch; char filename[32]; char line[1024]; if (pid < 0) { /* self process */ snprintf(filename, sizeof(filename), "/proc/self/maps", pid); // 同样是通过解析 maps 文件得到的 } else { snprintf(filename, sizeof(filename), "/proc/%d/maps", pid); } fp = fopen(filename, "r"); if (fp != NULL) { while (fgets(line, sizeof(line), fp)) { if (strstr(line, module_name)) { pch = strtok( line, "-" ); addr = strtoul( pch, NULL, 16 ); if (addr == 0x8000) addr = 0; break; } } fclose(fp) ; } return (void *)addr; } void* get_remote_addr(pid_t target_pid, const char* module_name, void* local_addr) // 这个函数获取目标进程内某个动态库函数的地址 { void* local_handle, *remote_handle; local_handle = get_module_base(-1, module_name); remote_handle = get_module_base(target_pid, module_name); DEBUG_PRINT("[+] get_remote_addr: local[%x], remote[%x]\n", local_handle, remote_handle); void * ret_addr = (void *)((uint32_t)local_addr + (uint32_t)remote_handle - (uint32_t)local_handle);// 算法一致, local_addr - local_handle 得到 // offset, 然后再加上 remote_handle, 即得到目标进程的函数地址 return ret_addr; }
以上函数基本上是helper函数,主要是封装了ptrace的调用实现一系列读写目标进程内存、寄存器的函数,并且封装了通过解析maps文件读取目标进程动态库里函数的地址的函数。
下面这个是 libinject2 的核心函数,实现了注入功能:
int inject_remote_process(pid_t target_pid, const char *library_path, const char *function_name, const char *param, size_t param_size) { int ret = -1; void *mmap_addr, *dlopen_addr, *dlsym_addr, *dlclose_addr, *dlerror_addr; // 存放目标进程相应函数的地址 void *local_handle, *remote_handle, *dlhandle; uint8_t *map_base = 0; // 存放目标进程mmap获取的内存块的地址 uint8_t *dlopen_param1_ptr, *dlsym_param2_ptr, *saved_r0_pc_ptr, *inject_param_ptr, *remote_code_ptr, *local_code_ptr; struct pt_regs regs; struct pt_regs original_regs; uint32_t code_length; long parameters[10]; DEBUG_PRINT("[+] Injecting process: %d\n", target_pid); if (ptrace_attach(target_pid) == -1) // 第一步: attach 到目标进程 goto exit; if (ptrace_getregs(target_pid, ®s) == -1) goto exit; /* save original registers */ memcpy(&original_regs, ®s, sizeof(regs)); // 第二步:保存目标进程被注入前的寄存器内容,方便注入完成后恢复 mmap_addr = get_remote_addr(target_pid, libc_path, (void *)mmap); DEBUG_PRINT("[+] Remote mmap address: %x\n", mmap_addr); /* call mmap */ parameters[0] = 0; // addr parameters[1] = 0x4000; // size parameters[2] = PROT_READ | PROT_WRITE | PROT_EXEC; // prot parameters[3] = MAP_ANONYMOUS | MAP_PRIVATE; // flags parameters[4] = 0; //fd parameters[5] = 0; //offset if (ptrace_call_wrapper(target_pid, "mmap", mmap_addr, parameters, 6, ®s) == -1) goto exit; map_base = ptrace_retval(®s); // 第三步,获取目标进程mmap调用的地址,并执行mmap调用,在目标进程分配一块地址,用于存放后面要注入的库路径和相关函数地址等 dlopen_addr = get_remote_addr( target_pid, linker_path, (void *)dlopen ); dlsym_addr = get_remote_addr( target_pid, linker_path, (void *)dlsym ); dlclose_addr = get_remote_addr( target_pid, linker_path, (void *)dlclose ); dlerror_addr = get_remote_addr( target_pid, linker_path, (void *)dlerror ); DEBUG_PRINT("[+] Get imports: dlopen: %x, dlsym: %x, dlclose: %x, dlerror: %x\n", dlopen_addr, dlsym_addr, dlclose_addr, dlerror_addr); printf("library path = %s\n", library_path); ptrace_writedata(target_pid, map_base, library_path, strlen(library_path) + 1);// 第四步,获取目标进程动态库的几个函数,并将要注入的so的路径写入刚刚申请的内存的初始地址 parameters[0] = map_base; parameters[1] = RTLD_NOW| RTLD_GLOBAL; if (ptrace_call_wrapper(target_pid, "dlopen", dlopen_addr, parameters, 2, ®s) == -1) goto exit; void * sohandle = ptrace_retval(®s); // 第五步,在目标进程内调用 dlopen函数加载要注入的 so ,这一步成功后,so已经被注入目标进程的地址空间内了 #define FUNCTION_NAME_ADDR_OFFSET 0x100 ptrace_writedata(target_pid, map_base + FUNCTION_NAME_ADDR_OFFSET, function_name, strlen(function_name) + 1); parameters[0] = sohandle; parameters[1] = map_base + FUNCTION_NAME_ADDR_OFFSET; if (ptrace_call_wrapper(target_pid, "dlsym", dlsym_addr, parameters, 2, ®s) == -1) goto exit; void * hook_entry_addr = ptrace_retval(®s); DEBUG_PRINT("hook_entry_addr = %p\n", hook_entry_addr); // 第六步,在目标进程内调用 dlsym函数获取刚刚注入的so里的hook函数 #define FUNCTION_PARAM_ADDR_OFFSET 0x200 ptrace_writedata(target_pid, map_base + FUNCTION_PARAM_ADDR_OFFSET, param, strlen(param) + 1); parameters[0] = map_base + FUNCTION_PARAM_ADDR_OFFSET; if (ptrace_call_wrapper(target_pid, "hook_entry", hook_entry_addr, parameters, 1, ®s) == -1) goto exit; printf("Press enter to dlclose and detach\n"); // 第七步,在目标进程内调用hook函数 getchar(); parameters[0] = sohandle; if (ptrace_call_wrapper(target_pid, "dlclose", dlclose, parameters, 1, ®s) == -1) goto exit; /* restore */ ptrace_setregs(target_pid, &original_regs); ptrace_detach(target_pid); // 第八步,恢复目标进程的寄存器,detach 退出对目标进程的 ptrace ret = 0; exit: return ret; }
最后是main函数,libinject2 只是注入了一个So到目标进程,并执行了so里的一个函数,还没有真正劫持目标进程的函数
int main(int argc, char** argv) { pid_t target_pid; //target_pid = find_pid_of("/system/bin/surfaceflinger"); target_pid = atoi(argv[1]); if (-1 == target_pid) { printf("Can't find the process\n"); return -1; } //target_pid = find_pid_of("/data/test"); inject_remote_process(target_pid, "/data/local/tmp/libhello.so", "hook_entry", "I'm parameter!", strlen("I'm parameter!")); return 0; }
完整的libinject.c:
#include <stdio.h> #include <stdlib.h> //#include <asm/user.h> #include <asm/ptrace.h> #include <sys/ptrace.h> #include <sys/wait.h> #include <sys/mman.h> #include <dlfcn.h> #include <dirent.h> #include <unistd.h> #include <string.h> #include <elf.h> #include <android/log.h> #define __arm__ 1 #if defined(__i386__) //#define pt_regs user_regs_struct #endif #define ENABLE_DEBUG 1 #if ENABLE_DEBUG #define LOG_TAG "INJECT" #define LOGD(fmt, args...) __android_log_print(ANDROID_LOG_DEBUG,LOG_TAG, fmt, ##args) #define DEBUG_PRINT(format,args...) \ LOGD(format, ##args) #else #define DEBUG_PRINT(format,args...) #endif #define CPSR_T_MASK ( 1u << 5 ) const char *libc_path = "/system/lib/libc.so"; const char *linker_path = "/system/bin/linker"; int ptrace_readdata(pid_t pid, uint8_t *src, uint8_t *buf, size_t size) { uint32_t i, j, remain; uint8_t *laddr; union u { long val; char chars[sizeof(long)]; } d; j = size / 4; remain = size % 4; laddr = buf; for (i = 0; i < j; i ++) { d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0); memcpy(laddr, d.chars, 4); src += 4; laddr += 4; } if (remain > 0) { d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0); memcpy(laddr, d.chars, remain); } return 0; } int ptrace_writedata(pid_t pid, uint8_t *dest, uint8_t *data, size_t size) { uint32_t i, j, remain; uint8_t *laddr; union u { long val; char chars[sizeof(long)]; } d; j = size / 4; remain = size % 4; laddr = data; for (i = 0; i < j; i ++) { memcpy(d.chars, laddr, 4); ptrace(PTRACE_POKETEXT, pid, dest, d.val); dest += 4; laddr += 4; } if (remain > 0) { d.val = ptrace(PTRACE_PEEKTEXT, pid, dest, 0); for (i = 0; i < remain; i ++) { d.chars[i] = *laddr ++; } ptrace(PTRACE_POKETEXT, pid, dest, d.val); } return 0; } #if defined(__arm__) int ptrace_call(pid_t pid, uint32_t addr, long *params, uint32_t num_params, struct pt_regs* regs) { uint32_t i; for (i = 0; i < num_params && i < 4; i ++) { regs->uregs[i] = params[i]; } // // push remained params onto stack // if (i < num_params) { regs->ARM_sp -= (num_params - i) * sizeof(long) ; ptrace_writedata(pid, (void *)regs->ARM_sp, (uint8_t *)¶ms[i], (num_params - i) * sizeof(long)); } regs->ARM_pc = addr; if (regs->ARM_pc & 1) { /* thumb */ regs->ARM_pc &= (~1u); regs->ARM_cpsr |= CPSR_T_MASK; } else { /* arm */ regs->ARM_cpsr &= ~CPSR_T_MASK; } regs->ARM_lr = 0; if (ptrace_setregs(pid, regs) == -1 || ptrace_continue(pid) == -1) { printf("error\n"); return -1; } int stat = 0; waitpid(pid, &stat, WUNTRACED); while (stat != 0xb7f) { if (ptrace_continue(pid) == -1) { printf("error\n"); return -1; } waitpid(pid, &stat, WUNTRACED); } return 0; } #elif defined(__i386__) #if 0 long ptrace_call(pid_t pid, uint32_t addr, long *params, uint32_t num_params, struct user_regs_struct * regs) { regs->esp -= (num_params) * sizeof(long) ; ptrace_writedata(pid, (void *)regs->esp, (uint8_t *)params, (num_params) * sizeof(long)); long tmp_addr = 0x00; regs->esp -= sizeof(long); ptrace_writedata(pid, regs->esp, (char *)&tmp_addr, sizeof(tmp_addr)); regs->eip = addr; if (ptrace_setregs(pid, regs) == -1 || ptrace_continue( pid) == -1) { printf("error\n"); return -1; } int stat = 0; waitpid(pid, &stat, WUNTRACED); while (stat != 0xb7f) { if (ptrace_continue(pid) == -1) { printf("error\n"); return -1; } waitpid(pid, &stat, WUNTRACED); } return 0; } #endif #else #error "Not supported" #endif int ptrace_getregs(pid_t pid, struct pt_regs * regs) { if (ptrace(PTRACE_GETREGS, pid, NULL, regs) < 0) { perror("ptrace_getregs: Can not get register values"); return -1; } return 0; } int ptrace_setregs(pid_t pid, struct pt_regs * regs) { if (ptrace(PTRACE_SETREGS, pid, NULL, regs) < 0) { perror("ptrace_setregs: Can not set register values"); return -1; } return 0; } int ptrace_continue(pid_t pid) { if (ptrace(PTRACE_CONT, pid, NULL, 0) < 0) { perror("ptrace_cont"); return -1; } return 0; } int ptrace_attach(pid_t pid) { if (ptrace(PTRACE_ATTACH, pid, NULL, 0) < 0) { perror("ptrace_attach"); return -1; } int status = 0; waitpid(pid, &status , WUNTRACED); return 0; } int ptrace_detach(pid_t pid) { if (ptrace(PTRACE_DETACH, pid, NULL, 0) < 0) { perror("ptrace_detach"); return -1; } return 0; } void* get_module_base(pid_t pid, const char* module_name) { FILE *fp; long addr = 0; char *pch; char filename[32]; char line[1024]; if (pid < 0) { /* self process */ snprintf(filename, sizeof(filename), "/proc/self/maps", pid); } else { snprintf(filename, sizeof(filename), "/proc/%d/maps", pid); } fp = fopen(filename, "r"); if (fp != NULL) { while (fgets(line, sizeof(line), fp)) { if (strstr(line, module_name)) { pch = strtok( line, "-" ); addr = strtoul( pch, NULL, 16 ); if (addr == 0x8000) addr = 0; break; } } fclose(fp) ; } return (void *)addr; } void* get_remote_addr(pid_t target_pid, const char* module_name, void* local_addr) { void* local_handle, *remote_handle; local_handle = get_module_base(-1, module_name); remote_handle = get_module_base(target_pid, module_name); DEBUG_PRINT("[+] get_remote_addr: local[%x], remote[%x]\n", local_handle, remote_handle); void * ret_addr = (void *)((uint32_t)local_addr + (uint32_t)remote_handle - (uint32_t)local_handle); #if defined(__i386__) if (!strcmp(module_name, libc_path)) { ret_addr += 2; } #endif return ret_addr; } int find_pid_of(const char *process_name) { int id; pid_t pid = -1; DIR* dir; FILE *fp; char filename[32]; char cmdline[256]; struct dirent * entry; if (process_name == NULL) return -1; dir = opendir("/proc"); if (dir == NULL) return -1; while((entry = readdir(dir)) != NULL) { id = atoi(entry->d_name); if (id != 0) { sprintf(filename, "/proc/%d/cmdline", id); fp = fopen(filename, "r"); if (fp) { fgets(cmdline, sizeof(cmdline), fp); fclose(fp); if (strcmp(process_name, cmdline) == 0) { /* process found */ pid = id; break; } } } } closedir(dir); return pid; } long ptrace_retval(struct pt_regs * regs) { #if defined(__arm__) return regs->ARM_r0; #elif defined(__i386__) //return regs->eax; #else #error "Not supported" #endif } long ptrace_ip(struct pt_regs * regs) { #if defined(__arm__) return regs->ARM_pc; #elif defined(__i386__) //return regs->eip; #else #error "Not supported" #endif } int ptrace_call_wrapper(pid_t target_pid, const char * func_name, void * func_addr, long * parameters, int param_num, struct pt_regs * regs) { DEBUG_PRINT("[+] Calling %s in target process.\n", func_name); if (ptrace_call(target_pid, (uint32_t)func_addr, parameters, param_num, regs) == -1) return -1; if (ptrace_getregs(target_pid, regs) == -1) return -1; DEBUG_PRINT("[+] Target process returned from %s, return value=%x, pc=%x \n", func_name, ptrace_retval(regs), ptrace_ip(regs)); return 0; } int inject_remote_process(pid_t target_pid, const char *library_path, const char *function_name, const char *param, size_t param_size) { int ret = -1; void *mmap_addr, *dlopen_addr, *dlsym_addr, *dlclose_addr, *dlerror_addr; void *local_handle, *remote_handle, *dlhandle; uint8_t *map_base = 0; uint8_t *dlopen_param1_ptr, *dlsym_param2_ptr, *saved_r0_pc_ptr, *inject_param_ptr, *remote_code_ptr, *local_code_ptr; struct pt_regs regs; struct pt_regs original_regs; extern uint32_t _dlopen_addr_s, _dlopen_param1_s, _dlopen_param2_s, _dlsym_addr_s, \ _dlsym_param2_s, _dlclose_addr_s, _inject_start_s, _inject_end_s, _inject_function_param_s, \ _saved_cpsr_s, _saved_r0_pc_s; uint32_t code_length; long parameters[10]; DEBUG_PRINT("[+] Injecting process: %d\n", target_pid); if (ptrace_attach(target_pid) == -1){ DEBUG_PRINT("[+] ptrace_attach fail: %d\n", target_pid); goto exit; } if (ptrace_getregs(target_pid, ®s) == -1){ DEBUG_PRINT("[+] ptrace_getregs fail: %d\n", target_pid); goto exit; } /* save original registers */ memcpy(&original_regs, ®s, sizeof(regs)); mmap_addr = get_remote_addr(target_pid, libc_path, (void *)mmap); DEBUG_PRINT("[+] Remote mmap address: %x\n", mmap_addr); /* call mmap */ parameters[0] = 0; // addr parameters[1] = 0x4000; // size parameters[2] = PROT_READ | PROT_WRITE | PROT_EXEC; // prot parameters[3] = MAP_ANONYMOUS | MAP_PRIVATE; // flags parameters[4] = 0; //fd parameters[5] = 0; //offset if (ptrace_call_wrapper(target_pid, "mmap", mmap_addr, parameters, 6, ®s) == -1){ DEBUG_PRINT("[+] ptrace_call_wrapper fail: %d\n", target_pid); goto exit; } map_base = ptrace_retval(®s); dlopen_addr = get_remote_addr( target_pid, linker_path, (void *)dlopen ); dlsym_addr = get_remote_addr( target_pid, linker_path, (void *)dlsym ); dlclose_addr = get_remote_addr( target_pid, linker_path, (void *)dlclose ); dlerror_addr = get_remote_addr( target_pid, linker_path, (void *)dlerror ); DEBUG_PRINT("[+] Get imports: dlopen: %x, dlsym: %x, dlclose: %x, dlerror: %x\n", dlopen_addr, dlsym_addr, dlclose_addr, dlerror_addr); printf("library path = %s\n", library_path); ptrace_writedata(target_pid, map_base, library_path, strlen(library_path) + 1); parameters[0] = map_base; parameters[1] = RTLD_NOW| RTLD_GLOBAL; if (ptrace_call_wrapper(target_pid, "dlopen", dlopen_addr, parameters, 2, ®s) == -1) goto exit; void * sohandle = ptrace_retval(®s); if(NULL == sohandle) { if (ptrace_call_wrapper(target_pid, "dlerror", dlerror_addr, parameters, 0, ®s) == -1) goto exit; char * errstr = ptrace_retval(®s); uint8_t buf[1024]={0}; ptrace_readdata(target_pid, errstr,buf,256); DEBUG_PRINT("[+] dlopen return error: %s\n", buf); } #define FUNCTION_NAME_ADDR_OFFSET 0x100 ptrace_writedata(target_pid, map_base + FUNCTION_NAME_ADDR_OFFSET, function_name, strlen(function_name) + 1); parameters[0] = sohandle; parameters[1] = map_base + FUNCTION_NAME_ADDR_OFFSET; if (ptrace_call_wrapper(target_pid, "dlsym", dlsym_addr, parameters, 2, ®s) == -1) goto exit; void * hook_entry_addr = ptrace_retval(®s); DEBUG_PRINT("hook_entry_addr = %p\n", hook_entry_addr); #define FUNCTION_PARAM_ADDR_OFFSET 0x200 ptrace_writedata(target_pid, map_base + FUNCTION_PARAM_ADDR_OFFSET, param, strlen(param) + 1); parameters[0] = map_base + FUNCTION_PARAM_ADDR_OFFSET; if (ptrace_call_wrapper(target_pid, "hook_entry", hook_entry_addr, parameters, 1, ®s) == -1) goto exit; // printf("Press enter to dlclose and detach\n"); printf("Press enter to detach\n"); getchar(); #if 0 parameters[0] = sohandle; if (ptrace_call_wrapper(target_pid, "dlclose", dlclose, parameters, 1, ®s) == -1) goto exit; #endif /* restore */ ptrace_setregs(target_pid, &original_regs); ptrace_detach(target_pid); ret = 0; exit: return ret; } #define HELPSTR "error usage: %s -p PID [-P PROCNAME] -l LIBNAME -f FUNCTION [-d (debug on)]\n" int main(int argc, char** argv) { pid_t target_pid = -1; char *proc_name = NULL; char *sodir = NULL; char *func_name = NULL; char *args = ""; int opt; while ((opt = getopt(argc, argv, "p:l:f:P:")) != -1) { switch (opt) { case 'p': target_pid = strtol(optarg, NULL, 0); break; case 'l': sodir = strdup(optarg); break; case 'f': func_name = strdup(optarg); break; case 'P': proc_name = strdup(optarg); break; default: fprintf(stderr,HELPSTR,argv[0]); exit(0); } } if(proc_name != NULL && target_pid < 0) target_pid = find_pid_of(proc_name); if(target_pid < 0 || NULL == sodir || NULL == func_name) { fprintf(stderr,HELPSTR,argv[0]); exit(0); } if(argc>4) args=argv[4]; inject_remote_process(target_pid, sodir, func_name, args, strlen(args)); return 0; }