似乎每一個有關分形的教程都要講到分形樹,大概是因為樹是生活中最常見的分形實物吧。這一節將展示下如何一步一步地生長出一棵樹來。其實現算法不難,就是在每一次生長迭代中,使線段生長出幾條新的線段來。
核心代碼:
static void FractalTree(const Vector3& vStart, const Vector3& vEnd, Yreal trunk_angle, Yreal branch_angle, Yreal trunk_c, Yreal branch_c, Vector3* pVertices) { Vector3 vSub = vEnd - vStart; Yreal len = D3DXVec3Length(&vSub); Yreal alfa = atan2f(vSub.y, vSub.x); Yreal trunk = len*trunk_c; Yreal branch = len*branch_c; Yreal branch2 = branch*1.25f; pVertices[0] = vEnd; //pVertices[1] = pVertices[0] + vSub*trunk_c; pVertices[1].x = pVertices[0].x + trunk*cosf(alfa + trunk_angle); pVertices[1].y = pVertices[0].y + trunk*sinf(alfa + trunk_angle); pVertices[1].z = 0.0f; pVertices[2] = vEnd; pVertices[3].x = pVertices[2].x + branch*cosf(alfa + branch_angle); pVertices[3].y = pVertices[2].y + branch*sinf(alfa + branch_angle); pVertices[3].z = 0.0f; pVertices[4] = pVertices[2]; pVertices[5].x = pVertices[4].x + branch*cosf(alfa - branch_angle); pVertices[5].y = pVertices[4].y + branch*sinf(alfa - branch_angle); pVertices[5].z = 0.0f; pVertices[6] = vStart + vSub*0.55f; pVertices[7].x = pVertices[6].x + branch2*cosf(alfa + branch_angle); pVertices[7].y = pVertices[6].y + branch2*sinf(alfa + branch_angle); pVertices[7].z = 0.0f; pVertices[8] = pVertices[6]; pVertices[9].x = pVertices[8].x + branch2*cosf(alfa - branch_angle); pVertices[9].y = pVertices[8].y + branch2*sinf(alfa - branch_angle); pVertices[9].z = 0.0f; }
軟件截圖:
樹的生成需要若干個參數:樹干的偏角,樹枝的偏角,樹干的生長長度,樹枝的生長長度,修改下參數可以得到如下形狀的樹: