無意中找到一篇十分好用,而且篇幅也不是很大的入門教程,通篇閱后,再把“栗子”敲一遍,基本可以有一個比較理性的認識,從而方便更好地進一步深入學習。
廢話不多說,上干貨(英語好的直接跳過本人的渣翻譯了哈——!純本人手打原創,有錯請指教,要轉載請聲明出處,謝~~):
MIPS Architecture and Assembly Language Overview
MIPS架構及其匯編初步
(開始之前稍微再提下,整體分為4個結構:)
1: 寄存器種類;
2: 算術及尋址指令
3: 程序結構
4: 系統調用
Data Types and Literals
數據類型
- 所有MIPS指令都是32位長的
- 各單位:1字節=8位,半字長=2個字節,1字長=4個字節
- 一個字符空間=1個字節
- 一個整型=一個字長=4個字節
- 單個字符用單引號,例如:'b'
- 字符串用雙引號,例如:"A string"
Registers
寄存器
- MIPS下一共有32個通用寄存器
- 在匯編中,寄存器標志由$符開頭
- 寄存器表示可以有兩種方式
- 直接使用該寄存器對應的編號,例如:從$0到$31
- 使用對應的寄存器名稱,例如:$t1, $sp(詳細含義,下文有表格
- 對於以上二者,不存在直接尋址;必須要通過mfhi("move from hi")以及mflo("move from lo")分別來進行訪問對應的內容
- 棧的走向是從高地址到低地址
-
對於乘法和除法分別有對應的兩個寄存器$lo, $hi
Register 寄存器編號 |
Alternative 寄存器名 |
Description 寄存器用途 |
---|---|---|
0
|
zero
|
the value 0 永遠返回零 |
1
|
$at
|
(assembler temporary) reserved by the assembler 匯編保留寄存器(不可做其他用途) |
2-3
|
$v0 - $v1
|
(values) from expression evaluation and function results (Value簡寫)存儲表達式或者是函數的返回值 |
4-7
|
$a0 - $a3
|
(arguments) First four parameters for subroutine. (Argument簡寫)存儲子程序的前4個參數,在子程序調用過程中釋放 |
8-15
|
$t0 - $t7
|
(temporaries) Caller saved if needed. Subroutines can use w/out saving. (Temp簡寫)臨時變量,同上調用時不保存 |
16-23
|
$s0 - $s7
|
(saved values) - Callee saved. (Saved or Static簡寫?)靜態變量?調用時保存 |
24-25
|
$t8 - $t9
|
(temporaries) Caller saved if needed. Subroutines can use w/out saving. (Temp簡寫)算是前面$0~$7的一個繼續,屬性同$t0~$t7 |
26-27
|
$k0 - $k1
|
reserved for use by the interrupt/trap handler (breaK off簡寫?)中斷函數返回值,不可做其他用途 |
28
|
$gp
|
global pointer. (Global Pointer簡寫)指向64k(2^16)大小的靜態數據塊的中間地址(字面上好像就是這個意思,塊的中間) |
29
|
$sp
|
stack pointer (Stack Pointer簡寫)棧指針,指向的是棧頂 |
30
|
$s8/$fp
|
saved value / frame pointer (Saved/Frame Pointer簡寫)幀指針 |
31
|
$ra
|
return address 返回地址,目測也是不可做其他用途 |
Program Structure
程序結構
- 本質其實就只是數據聲明+普通文本+程序編碼(文件后綴為.s,或者.asm也行)
- 數據聲明在代碼段之后(其實在其之前也沒啥問題,也更符合高級程序設計的習慣)
Data Declarations
數據聲明
- 數據段以 .data為開始標志
- 聲明變量后,即在主存中分配空間。
Code
代碼
- 代碼段以 .text為開始標志
- 其實就是各項指令操作
- 程序入口為main:標志(這個都一樣啦)
- 程序結束標志(詳見下文)
Comments
注釋
- 同C系語言
-
-
- MIPS程序的基本模板如下:
# Comment giving name of program and description of function
# 說明下程序的目的和作用(其實和高級語言都差不多了) # Template.s #Bare-bones outline of MIPS assembly language program
.data # variable declarations follow this line
# 數據變量聲明 # ... .text # instructions follow this line # 代碼段部分 main: # indicates start of code (first instruction to execute)
# 主程序 # ... # End of program, leave a blank line afterwards to make SPIM happy
# 必須多給你一行,你才歡?
- MIPS程序的基本模板如下:
-
Data Declarations
數據聲明
format for declarations:
聲明的格式:
name: storage_type value(s)
變量名:(冒號別少了) 數據類型 變量值
- create storage for variable of specified type with given name and specified value
- value(s) usually gives initial value(s); for storage type .space, gives number of spaces to be allocated
- 通常給變量賦一個初始值;對於.space,需要指明需要多少大小空間(bytes)
Note: labels always followed by colon ( : )
example var1: .word 3 # create a single integer variable with initial value 3
# 聲明一個 word 類型的變量 var1, 同時給其賦值為 3 array1: .byte 'a','b' # create a 2-element character array with elements initialized # to a and b
# 聲明一個存儲2個字符的數組 array1,並賦值 'a', 'b' array2: .space 40 # allocate 40 consecutive bytes, with storage uninitialized # could be used as a 40-element character array, or a # 10-element integer array; a comment should indicate which!
# 為變量 array2 分配 40字節(bytes)未使用的連續空間,當然,對於這個變量
# 到底要存放什么類型的值, 最好事先聲明注釋下!
Load / Store Instructions
加載/保存(也許這里寫成讀取/寫入 可能更易理解一點) 指令集
- 如果要訪問內存,不好意思,你只能用 load 或者 store 指令
- 其他的只能都一律是寄存器操作
load:
lw register_destination, RAM_source
#copy word (4 bytes) at source RAM location to destination register.
從內存中 復制 RAM_source 的內容到 對應的寄存器中
(lw中的'w'意為'word',即該數據大小為4個字節)
lb register_destination, RAM_source
#copy byte at source RAM location to low-order byte of destination register,
# and sign-e.g.tend to higher-order bytes同上, lb 意為 load byte
store word:
sw register_source, RAM_destination
#store word in source register into RAM destination
#將指定寄存器中的數據 寫入 到指定的內存中
sb register_source, RAM_destination
#store byte (low-order) in source register into RAM destination
load immediate:
li register_destination, value
#load immediate value into destination register
顧名思義,這里的 li 意為 load immediate
example: .data var1: .word 23 # declare storage for var1; initial value is 23 # 先聲明一個 word 型的變量 var1 = 3; .text __start: lw $t0, var1 # load contents of RAM location into register $t0: $t0 = var1
# 令寄存器 $t0 = var1 = 3; li $t1, 5 # $t1 = 5 ("load immediate")
# 令寄存器 $t1 = 5; sw $t1, var1 # store contents of register $t1 into RAM: var1 = $t1
# 將var1的值修改為$t1中的值: var1 = $t1 = 5; done
Indirect and Based Addressing
立即與間接尋址
load address:
直接給地址
la $t0, var1
- copy RAM address of var1 (presumably a label defined in the program) into register $t0
indirect addressing:
地址是寄存器的內容(可以理解為指針)
lw $t2, ($t0)
- load word at RAM address contained in $t0 into $t2
sw $t2, ($t0)
- store word in register $t2 into RAM at address contained in $t0
based or indexed addressing:
+偏移量
lw $t2, 4($t0)
- load word at RAM address ($t0+4) into register $t2
- "4" gives offset from address in register $t0
sw $t2, -12($t0)
- store word in register $t2 into RAM at address ($t0 - 12)
- negative offsets are fine
Note: based addressing is especially useful for:
不必多說,要用到偏移量的尋址,基本上使用最多的場景無非兩種:數組,棧。
- arrays; access elements as offset from base address
- stacks; easy to access elements at offset from stack pointer or frame pointer
example:
栗子: .data array1: .space 12 # declare 12 bytes of storage to hold array of 3 integers
# 定義一個 12字節 長度的數組 array1, 容納 3個整型 .text __start: la $t0, array1 # load base address of array into register $t0
# 讓 $t0 = 數組首地址 li $t1, 5 # $t1 = 5 ("load immediate") sw $t1, ($t0) # first array element set to 5; indirect addressing
# 對於 數組第一個元素賦值 array[0] = $1 = 5 li $t1, 13 # $t1 = 13 sw $t1, 4($t0) # second array element set to 13
# 對於 數組第二個元素賦值 array[1] = $1 = 13
# (該數組中每個元素地址相距長度就是自身數據類型長度,即4字節, 所以對於array+4就是array[1]) li $t1, -7 # $t1 = -7 sw $t1, 8($t0) # third array element set to -7
# 同上, array+8 = (address[array[0])+4)+ 4 = address(array[1]) + 4 = address(array[2]) done
Arithmetic Instructions
算術指令集
- 最多3個操作數
- 再說一遍,在這里,操作數只能是寄存器,絕對不允許出現地址
- 所有指令統一是32位 = 4 * 8 bit = 4bytes = 1 word
add $t0,$t1,$t2 # $t0 = $t1 + $t2; add as signed (2's complement) integers
sub $t2,$t3,$t4 # $t2 = $t3 Ð $t4 addi $t2,$t3, 5 # $t2 = $t3 + 5; "add immediate" (no sub immediate) addu $t1,$t6,$t7 # $t1 = $t6 + $t7; add as unsigned integers subu $t1,$t6,$t7 # $t1 = $t6 + $t7; subtract as unsigned integers mult $t3,$t4 # multiply 32-bit quantities in $t3 and $t4, and store 64-bit # result in special registers Lo and Hi: (Hi,Lo) = $t3 * $t4
運算結果存儲在hi,lo(hi高位數據, lo地位數據) div $t5,$t6 # Lo = $t5 / $t6 (integer quotient) # Hi = $t5 mod $t6 (remainder)
商數存放在 lo, 余數存放在 hi mfhi $t0 # move quantity in special register Hi to $t0: $t0 = Hi
不能直接獲取 hi 或 lo中的值, 需要mfhi, mflo指令傳值給寄存器 mflo $t1 # move quantity in special register Lo to $t1: $t1 = Lo # used to get at result of product or quotient
move $t2,$t3 # $t2 = $t3
Control Structures
控制流
Branches
分支(if else系列)
- comparison for conditional branches is built into instruction
b target # unconditional branch to program label target beq $t0,$t1,target # branch to target if $t0 = $t1 blt $t0,$t1,target # branch to target if $t0 < $t1 ble $t0,$t1,target # branch to target if $t0 <= $t1 bgt $t0,$t1,target # branch to target if $t0 > $t1 bge $t0,$t1,target # branch to target if $t0 >= $t1 bne $t0,$t1,target # branch to target if $t0 <> $t1
Jumps
跳轉(while, for, goto系列)
j target # unconditional jump to program label target
看到就跳, 不用考慮任何條件
jr $t3 # jump to address contained in $t3 ("jump register")
類似相對尋址,跳到該寄存器給出的地址處Subroutine Calls
子程序調用
subroutine call: "jump and link" instruction
jal sub_label # "jump and link"
- copy program counter (return address) to register $ra (return address register)
- 將當前的程序計數器保存到 $ra 中
- jump to program statement at sub_label
subroutine return: "jump register" instruction
jr $ra # "jump register"
- jump to return address in $ra (stored by jal instruction)
- 通過上面保存在 $ra 中的計數器返回調用前
Note: return address stored in register $ra; if subroutine will call other subroutines, or is recursive, return address should be copied from $ra onto stack to preserve it, since jal always places return address in this register and hence will overwrite previous value
如果說調用的子程序中有調用了其他子程序,如此往復, 則返回地址的標記就用 棧(stack) 來存儲, 畢竟 $ra 只有一個, (哥哥我分身乏術啊~~)。
System Calls and I/O (SPIM Simulator)
系統調用 與 輸入/輸出(主要針對SPIM模擬器)
(本人使用的是Mars 4.4,也通用--!)
- 通過系統調用實現終端的輸入輸出,以及聲明程序結束
- 學會使用 syscall
- 參數所使用的寄存器:$v0, $a0, $a1
- 返回值使用: $v0
下表給出了系統調用中對應功能,代碼,參數機返回值
Service | Code 對應功能的調用碼 |
Arguments 所需參數 |
Results 返回值 |
---|---|---|---|
print_int 打印一個整型 |
$v0 = 1
|
$a0 = integer to be printed 將要打印的整型賦值給 $a0 |
|
print_float 打印一個浮點 |
$v0 = 2
|
$f12 = float to be printed 將要打印的浮點賦值給 $f12 |
|
print_double 打印雙精度 |
$v0 = 3
|
$f12 = double to be printed 將要打印的雙精度賦值給 $f12 |
|
print_string |
$v0 = 4
|
$a0 = address of string in memory 將要打印的字符串的地址賦值給 $a0 |
|
read_int |
$v0 = 5
|
integer returned in $v0 將讀取的整型賦值給 $v0 |
|
read_float 讀取浮點 |
$v0 = 6
|
float returned in $v0 將讀取的浮點賦值給 $v0 |
|
read_double 讀取雙精度 |
$v0 = 7
|
double returned in $v0 將讀取的雙精度賦值給 $v0 |
|
read_string 讀取字符串 |
$v0 = 8
|
$a0 = memory address of string input buffer 將讀取的字符串地址賦值給 $a0 將讀取的字符串長度賦值給 $a1 |
|
sbrk 應該同C中的sbrk()函數 動態分配內存 |
$v0 = 9
|
$a0 = amount 需要分配的空間大小(單位目測是字節 bytes) |
address in $v0 將分配好的空間首地址給 $v0 |
exit 退出 |
$v0 =10
|
你懂得![]() |
- 大概意思是要打印的字符串應該有一個終止符,估計類似C中的'\0', 在這里我們只要聲明字符串為 .asciiz 類型即可。下面給個我用Mars4.4的提示:
- .ascii 與 .asciiz唯一區別就是 后者會在字符串最后自動加上一個終止符, 僅此而已
- The read_int, read_float and read_double services read an entire line of input up to and including the newline character.
- 對於讀取整型, 浮點型,雙精度的數據操作, 系統會讀取一整行,(也就是說以換行符為標志 '\n')
- The read_string service has the same semantices as the UNIX library routine fgets.
- It reads up to n-1 characters into a buffer and terminates the string with a null character.
- If fewer than n-1 characters are in the current line, it reads up to and including the newline and terminates the string with a null character.
- 這個不多說了,反正就是輸入過長就截取,過短就這樣,最后都要加一個終止符。
- The sbrk service returns the address to a block of memory containing n additional bytes. This would be used for dynamic memory allocation.
- 上邊的表里已經說得很清楚了。
- The exit service stops a program from running.
- 你懂得。。。
e.g. Print out integer value contained in register $t2
栗子: 打印一個存儲在寄存器 $2 里的整型
li $v0, 1 # load appropriate system call code into register $v0;
聲明需要調用的操作代碼為 1 (print_int) 並賦值給 $v0 # code for printing integer is 1 move $a0, $t2 # move integer to be printed into $a0: $a0 = $t2
將要打印的整型賦值給 $a0 syscall # call operating system to perform operation
e.g. Read integer value, store in RAM location with label int_value (presumably declared in data section)
栗子: 讀取一個數,並且存儲到內存中的 int_value 變量中
li $v0, 5 # load appropriate system call code into register $v0; # code for reading integer is 5
聲明需要調用的操作代碼為 5 (read_int) 並賦值給 $v0 syscall # call operating system to perform operation、
經過讀取操作后, $v0 的值已經變成了 輸入的 5 sw $v0, int_value # value read from keyboard returned in register $v0; # store this in desired location
通過寫入(store_word)指令 將 $v0的值(5) 存入 內存中 e.g. Print out string (useful for prompts)
栗子: 打印一個字符串(這是完整的,其實上面栗子都可以直接替換main: 部分,都能直接運行) .data string1 .asciiz "Print this.\n" # declaration for string variable, # .asciiz directive makes string null terminated .text main: li $v0, 4 # load appropriate system call code into register $v0; # code for printing string is 4
打印字符串, 賦值對應的操作代碼 $v0 = 4 la $a0, string1 # load address of string to be printed into $a0
將要打印的字符串地址賦值 $a0 = address(string1) syscall # call operating system to perform print operation
e.g. To indicate end of program, use exit system call; thus last lines of program should be:
執行到這里, 程序結束, 立馬走人, 管他后邊洪水滔天~~ li $v0, 10 # system call code for exit = 10 syscall # call operating sys
-------------------------------------------------我是那個分呀分呀分割線--------------------------------------------------------------------------
OK, 十分輕松又愉快的MIPS入門之旅到此告一段落, 下面我把用到的一些軟件和這篇文章的原文鏈接貼到下邊,有需要的, 各位客官自取哈~~~
1.Mars4.4
2.PCSpim Simulator
3.《MIPS Qucik Tutorial》你都看到這里了, 難道還怕點那么一個贊么~~~~~