題目:Maximum Product Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest product. For example, given the array [2,3,-2,4], the contiguous subarray [2,3] has the largest product = 6.
這道題屬於動態規划的題型,之前常見的是Maximum SubArray,現在是Product Subarray,不過思想是一致的。
當然不用動態規划,常規方法也是可以做的,但是時間復雜度過高(TimeOut),像下面這種形式:
1 // 思路:用兩個指針來指向字數組的頭尾 2 int maxProduct(int A[], int n) 3 { 4 assert(n > 0); 5 int subArrayProduct = -32768; 6 7 for (int i = 0; i != n; ++ i) { 8 int nTempProduct = 1; 9 for (int j = i; j != n; ++ j) { 10 if (j == i) 11 nTempProduct = A[i]; 12 else 13 nTempProduct *= A[j]; 14 if (nTempProduct >= subArrayProduct) 15 subArrayProduct = nTempProduct; 16 } 17 } 18 return subArrayProduct; 19 }
用動態規划的方法,就是要找到其轉移方程式,也叫動態規划的遞推式,動態規划的解法無非是維護兩個變量,局部最優和全局最優,我們先來看Maximum SubArray的情況,如果遇到負數,相加之后的值肯定比原值小,但可能比當前值大,也可能小,所以,對於相加的情況,只要能夠處理局部最大和全局最大之間的關系即可,對此,寫出轉移方程式如下:
local[i + 1] = Max(local[i] + A[i], A[i]);
global[i + 1] = Max(local[i + 1], global[i]);
對應代碼如下:
1 int maxSubArray(int A[], int n) 2 { 3 assert(n > 0); 4 if (n <= 0) 5 return 0; 6 int global = A[0]; 7 int local = A[0]; 8 9 for(int i = 1; i != n; ++ i) { 10 local = MAX(A[i], local + A[i]); 11 global = MAX(local, global); 12 } 13 return global; 14 }
而對於Product Subarray,要考慮到一種特殊情況,即負數和負數相乘:如果前面得到一個較小的負數,和后面一個較大的負數相乘,得到的反而是一個較大的數,如{2,-3,-7},所以,我們在處理乘法的時候,除了需要維護一個局部最大值,同時還要維護一個局部最小值,由此,可以寫出如下的轉移方程式:
max_copy[i] = max_local[i]
max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]), min_local * A[i])
min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]), min_local * A[i])
對應代碼如下:
1 #define MAX(x,y) ((x)>(y)?(x):(y)) 2 #define MIN(x,y) ((x)<(y)?(x):(y)) 3 4 int maxProduct1(int A[], int n) 5 { 6 assert(n > 0); 7 if (n <= 0) 8 return 0; 9 10 if (n == 1) 11 return A[0]; 12 int max_local = A[0]; 13 int min_local = A[0]; 14 15 int global = A[0]; 16 for (int i = 1; i != n; ++ i) { 17 int max_copy = max_local; 18 max_local = MAX(MAX(A[i] * max_local, A[i]), A[i] * min_local); 19 min_local = MIN(MIN(A[i] * max_copy, A[i]), A[i] * min_local); 20 global = MAX(global, max_local); 21 } 22 return global; 23 }
總結:動態規划題最核心的步驟就是要寫出其狀態轉移方程,但是如何寫出正確的方程式,需要我們不斷的實踐並總結才能達到。