面試:如何找出字符串的字典序全排列的第N種


1.題目

如何找出字符串的字典序全排列的第N種?(字符串全排列的變種)

2.思路

主要想通過這題,介紹一下康托展開式。基於康托展開式可以解決這個問題。

一般的解法:①求出所有全排列 ②按照字典序排個序 ③取第N個

3.康托展開與逆展開

康托展開是一個全排列到一個自然數的雙射,常用於構建哈希表時的空間壓縮。 康托展開的實質是計算當前排列在所有由小到大全排列中的順序,因此是可逆的。(引用

3.1公式
X=a[n]*(n-1)!+a[n-1]*(n-2)!+…+a[i]*(i-1)!+…+a[1]*0!

其中,a[i]為整數,並且0<=a[i]<i,1<=i<=n。

a[i]的意義參見舉例中的解釋部分

3.2舉例
例如,3 5 7 4 1 2 9 6 8 展開為 98884。因為X=2*8!+3*7!+4*6!+2*5!+0*4!+0*3!+2*2!+0*1!+0*0!=98884.

解釋:

排列的第一位是3,比3小的數有兩個,以這樣的數開始的排列有8!個,因此第一項為2*8!

排列的第二位是5,比5小的數有1、2、3、4,由於3已經出現,因此共有3個比5小的數,這樣的排列有7!個,因此第二項為3*7!

以此類推,直至0*0!

偽代碼實現

① Cantor(A, n) 求一個字符數組的康托值

1 Cantor(A, n)
2 for i←0 to n-1
3     result ← result + Less(A[i]) * F[i]
4 return result

定義:

  • A:待求康托值的字符數組
  • n:字符數組長度,如公式中的n
  • F:階乘的結果集,如公式中(n-1)!、i!、2!、1!、0!
  • Less:函數,求比自己小的數的個數,如公式中的a[i]的意義

②Less(n, set) 求比自己小的數的個數,公式中a[i]

1 Less(n, set)
2 for(m : set )
3     if m < n
4         count ← count+1
5 add(set, n)
6 return n - count -1

定義:

  • n:待求比自己小的數
  • set:存放已經出現過的數
  • count:比3小的數有1,2,如果1,2在set中出現了,count就計數這個。
  • 返回值:-1的目的是為了得到a[i]

3.3用途

顯然,n位(0~n-1)全排列后,其康托展開唯一且最大約為n!,因此可以由更小的空間來儲存這些排列。由公式可將X逆推出對應的全排列。

3.4康托展開的逆運算
既然康托展開是一個雙射,那么一定可以通過康托展開值求出原排列,即可以求出n的全排列中第x大排列。

如n=5,x=96時:

  1. 首先用96-1得到95,說明x之前有95個排列.(將此數本身減去!)
  2. 用95去除4! 得到3余23,說明有3個數比第1位小,所以第一位是4.
  3. 用23去除3! 得到3余5,說明有3個數比第2位小,所以是4,但是4已出現過,因此是5.
  4. 用5去除2!得到2余1,類似地,這一位是3.
  5. 用1去除1!得到1余0,這一位是2.
  6. 最后一位只能是1.
  7. 所以這個數是45321.

偽代碼實現

①ResolveCantor(A, X, n):給第X種,求該全排列n的字符串

1 ResolveCantor(A, X, n)
2 for i←0 to n-1
3     a ← X div F[i]
4     b ← X mod F[i]
5     A[i] ← Solve(a, visit)
6     X ← b
7 return A

定義:

  • A:存儲字符串的結果
  • X:字典序全排列的X種(0,1,2,3,...),這個值是康托值
  • n:字符數組長度,如康托公式中的n
  • F:階乘的結果集,如公式中(n-1)!、i!、2!、1!、0!
  • Solve:函數,求某個輸出字符

Solve(a, visit):求某個輸出字符

1 Solve(a, visit)
2 while a is visited
3     a← a+1
4     see a is visited or not
5 return a +1

定義:

  • a:康托公式中的a[i]
  • visit:boolean數組,visit[a]表示a是否已經出現過了。
  • 返回值:+1 為了構建出輸出字符

如果用這個算法去求字符串的全排列,時間復雜度是O(n3),優於遞歸算法的O(n!)。

3.5 Java代碼實現

為了實現簡單一些,實現部分采用的是int數組。

 1 import java.util.HashSet;
 2 import java.util.Set;
 3 
 4 public class Cantor {
 5 
 6     public static final int LEN = 3;
 7     private static int[] f = new int[LEN];
 8     private static Set<Integer> set = new HashSet<Integer>();
 9     private static boolean[] visit = new boolean[LEN];
10 
11     static {
12         int re = 1;
13         for (int i = 1; i < LEN; i++) {
14             re *= i;
15             f[LEN - 1 - i] = re;
16         }
17         f[LEN - 1] = 1;
18         for (int i = 0; i < LEN; i++) {
19             visit[i] = false;
20         }
21         System.out.println("F[0]: " + f[0]);
22     }
23 
24     public static void main(String[] args) {
25         int[] a = { 2, 1, 3 };
26         int n = a.length;
27         int x = cantor(a, n);
28         String str = "";
29         for (int i = 0; i < n; i++) {
30             str += "" + a[i];
31         }
32         System.out.println("src String: " + str);
33         System.out.println("cantor value: " + x);
34         int[] b = new int[LEN];
35         resolveCantor(b, x, n);
36         str = "";
37         for (int i = 0; i < n; i++) {
38             str += "" + b[i];
39         }
40         System.out.println("resolve cantor str: " + str);
41     }
42 
43     static int cantor(int[] a, int n) {
44         int result = 0;
45         for (int i = 0; i < n; i++) {
46             result += less(a[i]) * f[i];
47         }
48         return result;
49     }
50 
51     private static int less(int n) {
52         int count = 0;
53         for (Integer m : set) {
54             if (m < n)
55                 count++;
56         }
57         set.add(n);
58         return n - count - 1;
59     }
60 
61     static int[] resolveCantor(int[] arr, int x, int n) {
62         int a, b;
63         for (int i = 0; i < n; i++) {
64             a = x / f[i];
65             b = x % f[i];
66             arr[i] = solve(a);
67             System.out.println("a: " + a + " b: " + b + " arr[i]: " + arr[i]);
68             x = b;
69         }
70         return arr;
71     }
72 
73     private static int solve(int a) {
74         boolean flag = true;
75         while (flag) {
76             if (visit[a] == false) {
77                 visit[a] = true;
78                 flag = false;
79             } else {
80                 a++;
81             }
82         }
83         return a + 1;
84     }
85 }
View Code

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM