(博客園-番茄醬原創)
在我的系統中,hadoop-2.5.1的安裝路徑是/opt/lib64/hadoop-2.5.1下面,然后hadoop-2.2.0的路徑是/home/hadoop/下載/hadoop-2.2.0,我的eclipse的安裝路徑是/opt/programming/atd-bundle/eclipse。
因為老師需要我們寫mapreduce程序,所以現在需要配置hadoop的eclipse插件。之前在windows下面安裝hadoop一直會有莫名其妙的問題,所以索性直接在linux下面裝了。Linux下面還更簡單一些。
下面談談如何配置吧。
其實這次配置,並不是直接生成hadoop2.5.1的插件,而是生成hadoop2.2.0的插件,但是兼容hadoop-2.5.1。(這句話實際上指的是下面1步驟中的那個包是基於hadoop-2.2.0的開發的並且編譯時候依賴hadoop-2.2.0,所以我們需要下載hadoop-2.2.0)。因此,我們需要下載的東西有3個,一個是hadoop插件源文件,一個是ant(fedora20在線安裝),一個是額外的hadoop-2.2.0.tar.gz
。
- 下載hadoop2x-eclipse-plugin-master.zip,這是插件源文件,需要用ant編譯。下載地址是:https://codeload.github.com/jaradgreen/hadoop2x-eclipse-plugin/zip/master
- 然后安裝在線安裝ant編譯工具,在終端輸入:yum install ant,一路選擇yes或y安裝。
- 將下載的hadoop2x-eclipse-plugin-master.zip解壓,cd到下載的文件目錄,終端輸入:unzip hadoop2x-eclipse-plugin-master.zip,然后在當前目錄下就會多出一個文件夾:hadoop2x-eclipse-plugin-master
- 然后cd hadoop2x-eclipse-plugin-master/src/contrib/eclipse-plugin進入解壓的文件夾/hadoop2x-eclipse-plugin-master/src/contrib/eclipse-plugin目錄下,修改build.xml。
- 修改編譯配置文件build.xml.輸入命令vi build.xml
- 在build.xml文件中project標簽后面第三行,添加 <property name="eclipse.home" location="/opt/programming/adt-bundle/eclipse"/><!---這個是用來指出eclipse的安裝目錄->
- <property name="hadoop.home" location="/home/hadoop/下載/hadoop-2.2.0"/><!--此處需要hadoop2.2.0的發行包,編譯依賴此路徑(不是源包,也不是你安裝的hadoop-2.5.1的路徑,別弄混了)-->
- <property name="version" value="2.5.1"/> <!--(注意:自己根據自己的hadoop2.2.0和eclipse的路徑情況,更改上述的安裝位置)-->
- 然后進行ant編譯, 運行ant命令, ant jar -D eclipse.home=/opt/programming/adt-bundle/eclipse -D hadoop.home=/home/hadoop/下載/hadoop-2.2.0 -D version=2.5.1
- 然后ant就會編譯生成一個jar文件,在hadoop2x-eclipse-plugin-master/build/contrib/eclipse-plugin 下面,名為hadoop-eclipse-plugin-2.5.1.jar 然后將其拷到eclipse安裝路徑下的plugin文件夾下面,我的是/opt/programming/adt-bundle/eclipse/plugins 這個命令是mv /home/hadoop/下載/hadoop2x-eclipse-plugin-master/build/contrib/eclipse-plugin/hadoop-eclipse-plugin-2.5.1.jar /opt/programming/adt-bundle/eclipse/plugins/根據自己的情況進行更改啦
- 重啟eclipse,一路點擊windows->show view->other->mapreduce tools就可以選擇hadoop視圖了,然后就可以進行相應的編程了。
- 把剛剛的hadoop-2.2.0刪掉,他已經光榮的完成使命啦
打開eclipse,然后進行一些配置
先選擇hadoop的安裝路徑
然后點擊ok
然后點擊hadoop location,然后新建一個location
右擊鼠標新建一個location
到這邊,hadoop的eclipse就配置完畢了。如果你的hadoop的是開啟的狀態下,在eclipse中便可以直接操作dfs了
對了,如果你要跑wordcount程序,你需要在hadoop的src包中找到WordCount.java文件,
該目錄下面有好多例子,目錄是hadoop-2.5.1-src/hadoop-mapreduce-project/hadoop-mapreduce-examples/src/main/java/org/apache/hadoop/examples
附上其中除了命名空間的包名的代碼
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length < 2) { System.err.println("Usage: wordcount <in> [<in>...] <out>"); System.exit(2); } Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); for (int i = 0; i < otherArgs.length - 1; ++i) { FileInputFormat.addInputPath(job, new Path(otherArgs[i])); } FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
運行之前,需要配置run的參數:hdfs://localhost:9000/input hdfs://localhost:9000/output。然后再run as-> run on hadoop(要先把hadoop開啟)
在input文件夾下面放置2個文件,比如file1.txt,file2.txt,然后運行過后程序會新建一個output文件夾,里面會包含結果
file1
file2.txt
output下面文件內容