前段時候由於項目的原因,需要畫圖,然后開始接觸R語言的igraph包,網上零零散散的搜羅了不少的信息,放在這邊交流分享的同時也給自己留個備份吧~
1.首先是讀取文件,基本選用的都是csv文件
edge1<-read.csv("D:/9th_smj/onetimecut.csv",header=F) vertex3<-read.csv("D:/9th_smj/vertex.csv",header=F)
2.設置變量的格式
edge1[,1]=as.character(edge1[,1]) edge1[,2]=as.character(edge1[,2]) edge1[,3]=as.character(edge1[,3]) edge1[,4]=as.character(edge1[,4])
edge<-edge1[c(1,3)] vertex3[,1]=as.character(vertex3[,1]) vertex3[,2]=as.character(vertex3[,2])
3.圖構建
people = data.frame(id = vertex3[,1], name = vertex3[,2]) g=graph.data.frame(d=edge,direct=T,vertices=people)
4.畫圖
png('D:/9th_smj/cuttoone.png',width=900,height=900) set.seed(20)#設定種子節點,同一種布局畫出來的圖就是可以重復,不然即使同一種布局,展現的時候由於位置的隨機也會呈現出不一樣的結果 plot(g, layout = layout.fruchterman.reingold, vertex.size = V(g)$size+2,vertex.color=V(g)$color,vertex.label=V(g)$label,vertex.label.cex=1,edge.color = grey(0.5), edge.arrow.mode = "-",edge.arrow.size=5) dev.off()
針對plot函數的一些參數,特別解釋下:
4.1 layout設置圖的布局方式
選項有:layout、layout.auto、layout.bipartite、layout.circle、layout.drl、layout.fruchterman.reingold、layout.fruchterman.reingold.grid、layout.graphopt、layout.grid、layout.grid.3d、layout.kamada.kawai、layout.lgl、layout.mds、layout.merge、layout.norm、layout.random、layout.reingold.tilford、layout.sphere、layout.spring、layout.star、layout.sugiyama、layout.svd
4.2 vertex.size設置節點的大小:不同節點不同大小
de<-read.csv("c:/degree-info.csv",header=F) V(g)$deg<-de[,2] V(g)$size=2 V(g)[deg>=1]$size=4 V(g)[deg>=2]$size=6 V(g)[deg>=3]$size=8 V(g)[deg>=4]$size=10 V(g)[deg>=5]$size=12 V(g)[deg>=6]$size=14
4.3 vertex.color設置節點的顏色:不同標記有不用的顏色
color<-read.csv("c:/color.csv",header=F) col<-c("red","skyblue") V(g)$color=col[color[,1]]
4.4 vertex.label設置節點的標記
V(g)$label=V(g)$name vertex.label=V(g)$label
4.5 vertex.label.cex設置節點標記的字體大小
4.6 edge.color設置邊的顏色:不同的邊有不一樣的顏色
E(g)$color="grey" for(i in 1:length(pa3[,1])){ E(g,path=pa3[i,])$color="red" } edge.color=E(g)$color
4.7 edge.arrow.mode設置邊的連接方式
4.8 edge.arrow.size設置箭頭的大小
4.9 設置邊的寬度
E(g)$width=1
5.聚類分析
感覺igraph包所提供的聚類算法還是很多的,將幾種常用的列出,隨后有時間的話再附上算法思想及參考文獻
5.1 邊的中介度聚類
system.time(ec <- edge.betweenness.community(g)) print(modularity(ec)) plot(ec, g,vertex.size=5,vertex.label=NA)
5.2 隨機游走
system.time(wc <- walktrap.community(g)) print(modularity(wc)) #membership(wc) plot(wc , g,vertex.size=5,vertex.label=NA)
5.3 特征值(個人理解覺得類似譜聚類)
system.time(lec <-leading.eigenvector.community(g)) print(modularity(lec)) plot(lec,g,vertex.size=5,vertex.label=NA)
5.4 貪心策略?
system.time(fc <- fastgreedy.community(g)) print(modularity(fc)) plot(fc, g,vertex.size=5,vertex.label=NA)
5.5 多層次聚類
system.time(mc <- multilevel.community(g, weights=NA)) print(modularity(mc)) plot(mc, g,vertex.size=5,vertex.label=NA)
5.6 標簽傳播
system.time(lc <- label.propagation.community(g)) print(modularity(lc)) plot(lc , g,vertex.size=5,vertex.label=NA)
6.文件輸出
zz<-file("d:/test.txt","w") cat(x,file=zz,sep="\n") close(zz)
7.查看變量數據類型和長度
mode(x) length(x)