linux下進程間通信的幾種主要手段簡介:
1. 管道(Pipe)及有名管道(named pipe):管道可用於具有親緣關系進程間的通信,有名管道克服了管道沒有名字的限制,因此,除具有管道所具有的功能外,它還允許無親緣關系進程間的通信;
2. 信號(Signal):信號是比較復雜的通信方式,用於通知接受進程有某種事件發生,除了用於進程間通信外,進程還可以發送信號給進程本身;linux除了支持Unix早期信號語義函數sigal外,還支持語義符合Posix.1標准的信號函數 sigaction(實際上,該函數是基於BSD的,BSD為了實現可靠信號機制,又能夠統一對外接口,用sigaction函數重新實現了signal 函數);
3. 報文(Message)隊列(消息隊列):消息隊列是消息的鏈接表,包括Posix消息隊列system V消息隊列。有足夠權限的進程可以向隊列中添加消息,被賦予讀權限的進程則可以讀走隊列中的消息。消息隊列克服了信號承載信息量少,管道只能承載無格式字節流以及緩沖區大小受限等缺點。
4. 共享內存:使得多個進程可以訪問同一塊內存空間,是最快的可用IPC形式。是針對其他通信機制運行效率較低而設計的。往往與其它通信機制,如信號量結合使用,來達到進程間的同步及互斥。
5. 信號量(semaphore):主要作為進程間以及同一進程不同線程之間的同步手段。
6. 套接口(Socket):更為一般的進程間通信機制,可用於不同機器之間的進程間通信。起初是由Unix系統的BSD分支開發出來的,但現在一般可以移植到其它類Unix系統上:Linux和System V的變種都支持套接字。
1)互斥鎖(mutex)
通過鎖機制實現線程間的同步。同一時刻只允許一個線程執行一個關鍵部分的代碼。
int pthread_mutex_init(pthread_mutex_t *mutex,const pthread_mutex_attr_t *mutexattr);
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_destroy(pthread_mutex *mutex);
int pthread_mutex_unlock(pthread_mutex *
(1)先初始化鎖init()或靜態賦值pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIER
attr_t有:
PTHREAD_MUTEX_TIMED_NP:其余線程等待隊列
PTHREAD_MUTEX_RECURSIVE_NP:嵌套鎖,允許線程多次加鎖,不同線程,解鎖后重新競爭
PTHREAD_MUTEX_ERRORCHECK_NP:檢錯,與一同,線程請求已用鎖,返回EDEADLK;
PTHREAD_MUTEX_ADAPTIVE_NP:適應鎖,解鎖后重新競爭
(2)加鎖,lock,trylock,lock阻塞等待鎖,trylock立即返回EBUSY
(3)解鎖,unlock需滿足是加鎖狀態,且由加鎖線程解鎖
(4)清除鎖,destroy(此時鎖必需unlock,否則返回EBUSY,//Linux下互斥鎖不占用內存資源
示例代碼
- #include <cstdio>
- #include <cstdlib>
- #include <unistd.h>
- #include <pthread.h>
- #include "iostream"
- using namespace std;
- pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
- int tmp;
- void* thread(void *arg)
- {
- cout << "thread id is " << pthread_self() << endl;
- pthread_mutex_lock(&mutex);
- tmp = 12;
- cout << "Now a is " << tmp << endl;
- pthread_mutex_unlock(&mutex);
- return NULL;
- }
- int main()
- {
- pthread_t id;
- cout << "main thread id is " << pthread_self() << endl;
- tmp = 3;
- cout << "In main func tmp = " << tmp << endl;
- if (!pthread_create(&id, NULL, thread, NULL))
- {
- cout << "Create thread success!" << endl;
- }
- else
- {
- cout << "Create thread failed!" << endl;
- }
- pthread_join(id, NULL);
- pthread_mutex_destroy(&mutex);
- return 0;
- }
編譯: g++ -o thread testthread.cpp -lpthread
說明:pthread庫不是Linux系統默認的庫,連接時需要使用靜態庫libpthread.a,所以在使用pthread_create()創建線程,以及調用pthread_atfork()函數建立fork處理程序時,需要鏈接該庫。在編譯中要加 -lpthread參數。
2)條件變量(cond)
利用線程間共享的全局變量進行同步的一種機制。條件變量上的基本操作有:觸發條件(當條件變為 true 時);等待條件,掛起線程直到其他線程觸發條件。
int pthread_cond_init(pthread_cond_t *cond,pthread_condattr_t *cond_attr);
int pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有線程的阻塞
(1)初始化.init()或者pthread_cond_t cond=PTHREAD_COND_INITIALIER(前者為動態初始化,后者為靜態初始化);屬性置為NULL
(2)等待條件成立.pthread_wait,pthread_timewait.wait()釋放鎖,並阻塞等待條件變量為真,timewait()設置等待時間,仍未signal,返回ETIMEOUT(加鎖保證只有一個線程wait)
(3)激活條件變量:pthread_cond_signal,pthread_cond_broadcast(激活所有等待線程)
(4)清除條件變量:destroy;無線程等待,否則返回EBUSY
對於
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime);
一定要在mutex的鎖定區域內使用。
如果要正確的使用pthread_mutex_lock與pthread_mutex_unlock,請參考
pthread_cleanup_push和pthread_cleanup_pop宏,它能夠在線程被cancel的時候正確的釋放mutex!
另外,posix1標准說,pthread_cond_signal與pthread_cond_broadcast無需考慮調用線程是否是mutex的擁有者,也就是說,可以在lock與unlock以外的區域調用。如果我們對調用行為不關心,那么請在lock區域之外調用吧。
說明:
(1)pthread_cond_wait 自動解鎖互斥量(如同執行了pthread_unlock_mutex),並等待條件變量觸發。這時線程掛起,不占用CPU時間,直到條件變量被觸發(變量為ture)。在調用 pthread_cond_wait之前,應用程序必須加鎖互斥量。pthread_cond_wait函數返回前,自動重新對互斥量加鎖(如同執行了pthread_lock_mutex)。
(2)互斥量的解鎖和在條件變量上掛起都是自動進行的。因此,在條件變量被觸發前,如果所有的線程都要對互斥量加鎖,這種機制可保證在線程加鎖互斥量和進入等待條件變量期間,條件變量不被觸發。條件變量要和互斥量相聯結,以避免出現條件競爭——個線程預備等待一個條件變量,當它在真正進入等待之前,另一個線程恰好觸發了該條件(條件滿足信號有可能在測試條件和調用pthread_cond_wait函數(block)之間被發出,從而造成無限制的等待)。
(3)pthread_cond_timedwait 和 pthread_cond_wait 一樣,自動解鎖互斥量及等待條件變量,但它還限定了等待時間。如果在abstime指定的時間內cond未觸發,互斥量mutex被重新加鎖,且pthread_cond_timedwait返回錯誤 ETIMEDOUT。abstime 參數指定一個絕對時間,時間原點與 time 和 gettimeofday 相同:abstime = 0 表示 1970年1月1日00:00:00 GMT。
(4)pthread_cond_destroy 銷毀一個條件變量,釋放它擁有的資源。進入 pthread_cond_destroy 之前,必須沒有在該條件變量上等待的線程。
(5)條件變量函數不是異步信號安全的,不應當在信號處理程序中進行調用。特別要注意,如果在信號處理程序中調用 pthread_cond_signal 或pthread_cond_boardcast 函數,可能導致調用線程死鎖。
示例程序1
- #include <stdio.h>
- #include <pthread.h>
- #include "stdlib.h"
- #include "unistd.h"
- pthread_mutex_t mutex;
- pthread_cond_t cond;
- void hander(void *arg)
- {
- free(arg);
- (void)pthread_mutex_unlock(&mutex);
- }
- void *thread1(void *arg)
- {
- pthread_cleanup_push(hander, &mutex);
- while(1)
- {
- printf("thread1 is running\n");
- pthread_mutex_lock(&mutex);
- pthread_cond_wait(&cond,&mutex);
- printf("thread1 applied the condition\n");
- pthread_mutex_unlock(&mutex);
- sleep(4);
- }
- pthread_cleanup_pop(0);
- }
- void *thread2(void *arg)
- {
- while(1)
- {
- printf("thread2 is running\n");
- pthread_mutex_lock(&mutex);
- pthread_cond_wait(&cond,&mutex);
- printf("thread2 applied the condition\n");
- pthread_mutex_unlock(&mutex);
- sleep(1);
- }
- }
- int main()
- {
- pthread_t thid1,thid2;
- printf("condition variable study!\n");
- pthread_mutex_init(&mutex,NULL);
- pthread_cond_init(&cond,NULL);
- pthread_create(&thid1,NULL,thread1,NULL);
- pthread_create(&thid2,NULL,thread2,NULL);
- sleep(1);
- do
- {
- pthread_cond_signal(&cond);
- }while(1);
- sleep(20);
- pthread_exit(0);
- return 0;
- }
示例程序2:
- #include <pthread.h>
- #include <unistd.h>
- #include "stdio.h"
- #include "stdlib.h"
- static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
- static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
- struct node
- {
- int n_number;
- struct node *n_next;
- } *head = NULL;
- /*[thread_func]*/
- static void cleanup_handler(void *arg)
- {
- printf("Cleanup handler of second thread./n");
- free(arg);
- (void)pthread_mutex_unlock(&mtx);
- }
- static void *thread_func(void *arg)
- {
- struct node *p = NULL;
- pthread_cleanup_push(cleanup_handler, p);
- while (1)
- {
- //這個mutex主要是用來保證pthread_cond_wait的並發性
- pthread_mutex_lock(&mtx);
- while (head == NULL)
- {
- //這個while要特別說明一下,單個pthread_cond_wait功能很完善,為何
- //這里要有一個while (head == NULL)呢?因為pthread_cond_wait里的線
- //程可能會被意外喚醒,如果這個時候head != NULL,則不是我們想要的情況。
- //這個時候,應該讓線程繼續進入pthread_cond_wait
- // pthread_cond_wait會先解除之前的pthread_mutex_lock鎖定的mtx,
- //然后阻塞在等待對列里休眠,直到再次被喚醒(大多數情況下是等待的條件成立
- //而被喚醒,喚醒后,該進程會先鎖定先pthread_mutex_lock(&mtx);,再讀取資源
- //用這個流程是比較清楚的/*block-->unlock-->wait() return-->lock*/
- pthread_cond_wait(&cond, &mtx);
- p = head;
- head = head->n_next;
- printf("Got %d from front of queue/n", p->n_number);
- free(p);
- }
- pthread_mutex_unlock(&mtx); //臨界區數據操作完畢,釋放互斥鎖
- }
- pthread_cleanup_pop(0);
- return 0;
- }
- int main(void)
- {
- pthread_t tid;
- int i;
- struct node *p;
- //子線程會一直等待資源,類似生產者和消費者,但是這里的消費者可以是多個消費者,而
- //不僅僅支持普通的單個消費者,這個模型雖然簡單,但是很強大
- pthread_create(&tid, NULL, thread_func, NULL);
- sleep(1);
- for (i = 0; i < 10; i++)
- {
- p = (struct node*)malloc(sizeof(struct node));
- p->n_number = i;
- pthread_mutex_lock(&mtx); //需要操作head這個臨界資源,先加鎖,
- p->n_next = head;
- head = p;
- pthread_cond_signal(&cond);
- pthread_mutex_unlock(&mtx); //解鎖
- sleep(1);
- }
- printf("thread 1 wanna end the line.So cancel thread 2./n");
- //關於pthread_cancel,有一點額外的說明,它是從外部終止子線程,子線程會在最近的取消點,退出
- //線程,而在我們的代碼里,最近的取消點肯定就是pthread_cond_wait()了。
- pthread_cancel(tid);
- pthread_join(tid, NULL);
- printf("All done -- exiting/n");
- return 0;
- }
3)信號量
如同進程一樣,線程也可以通過信號量來實現通信,雖然是輕量級的。
信號量函數的名字都以"sem_"打頭。線程使用的基本信號量函數有四個。
#include <semaphore.h>
int sem_init (sem_t *sem , int pshared, unsigned int value);
這是對由sem指定的信號量進行初始化,設置好它的共享選項(linux 只支持為0,即表示它是當前進程的局部信號量),然后給它一個初始值VALUE。
兩個原子操作函數:
int sem_wait(sem_t *sem);
int sem_post(sem_t *sem);
這兩個函數都要用一個由sem_init調用初始化的信號量對象的指針做參數。
sem_post:給信號量的值加1;
sem_wait:給信號量減1;對一個值為0的信號量調用sem_wait,這個函數將會等待直到有其它線程使它不再是0為止。
int sem_destroy(sem_t *sem);
這個函數的作用是再我們用完信號量后都它進行清理。歸還自己占有的一切資源。
示例代碼:
- #include <stdlib.h>
- #include <stdio.h>
- #include <unistd.h>
- #include <pthread.h>
- #include <semaphore.h>
- #include <errno.h>
- #define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
- typedef struct _PrivInfo
- {
- sem_t s1;
- sem_t s2;
- time_t end_time;
- }PrivInfo;
- static void info_init (PrivInfo* thiz);
- static void info_destroy (PrivInfo* thiz);
- static void* pthread_func_1 (PrivInfo* thiz);
- static void* pthread_func_2 (PrivInfo* thiz);
- int main (int argc, char** argv)
- {
- pthread_t pt_1 = 0;
- pthread_t pt_2 = 0;
- int ret = 0;
- PrivInfo* thiz = NULL;
- thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
- if (thiz == NULL)
- {
- printf ("[%s]: Failed to malloc priv./n");
- return -1;
- }
- info_init (thiz);
- ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
- if (ret != 0)
- {
- perror ("pthread_1_create:");
- }
- ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
- if (ret != 0)
- {
- perror ("pthread_2_create:");
- }
- pthread_join (pt_1, NULL);
- pthread_join (pt_2, NULL);
- info_destroy (thiz);
- return 0;
- }
- static void info_init (PrivInfo* thiz)
- {
- return_if_fail (thiz != NULL);
- thiz->end_time = time(NULL) + 10;
- sem_init (&thiz->s1, 0, 1);
- sem_init (&thiz->s2, 0, 0);
- return;
- }
- static void info_destroy (PrivInfo* thiz)
- {
- return_if_fail (thiz != NULL);
- sem_destroy (&thiz->s1);
- sem_destroy (&thiz->s2);
- free (thiz);
- thiz = NULL;
- return;
- }
- static void* pthread_func_1 (PrivInfo* thiz)
- {
- return_if_fail (thiz != NULL);
- while (time(NULL) < thiz->end_time)
- {
- sem_wait (&thiz->s2);
- printf ("pthread1: pthread1 get the lock./n");
- sem_post (&thiz->s1);
- printf ("pthread1: pthread1 unlock/n");
- sleep (1);
- }
- return;
- }
- static void* pthread_func_2 (PrivInfo* thiz)
- {
- return_if_fail (thiz != NULL);
- while (time (NULL) < thiz->end_time)
- {
- sem_wait (&thiz->s1);
- printf ("pthread2: pthread2 get the unlock./n");
- sem_post (&thiz->s2);
- printf ("pthread2: pthread2 unlock./n");
- sleep (1);
- }
- return;
- }
通 過執行結果后,可以看出,會先執行線程二的函數,然后再執行線程一的函數。它們兩就實現了同步。在上大學的時候,雖然對這些概念知道,可都沒有實踐過,所 以有時候時間一久就會模糊甚至忘記,到了工作如果還保持這么一種狀態,那就太可怕了。雖然現在外面的技術在不斷的變化更新,可是不管怎么變,其核心技術還 是依舊的,所以我們必須要打好自己的基礎,再學習其他新的知識,那時候再學新的知識也會覺得比較簡單的。信號量代碼摘自http://blog.csdn.net/wtz1985/article/details/3835781
參考:
【1】 http://www.cnblogs.com/feisky/archive/2009/11/12/1601824.html
【2】 http://www.cnblogs.com/mydomain/archive/2011/07/10/2102147.html
【3】 線程函數介紹
http://www.unix.org/version2/whatsnew/threadsref.html
【4】 http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
【5】 線程常用函數簡介
http://www.rosoo.net/a/201004/8954.html
【6】 條件變量
http://blog.csdn.net/hiflower/article/details/2195350
【7】條件變量函數說明
http://blog.csdn.net/hairetz/article/details/4535920
本文來自博文:
http://www.cnblogs.com/mydomain/archive/2011/08/14/2138455.html
