100層的大樓,用2個玻璃球,確定在那層丟下玻璃球剛好會碎?【?】


有一棟100層高的大樓,給你兩個完全相同的玻璃球。假設從某一層開始,丟下玻璃球會摔碎。那么怎么利用手中的兩個球,用什么最優策略知道這個臨界的層是第幾層???

 

解答如下:

http://blog.csdn.net/lzshlzsh/article/details/5951447

  投擲次數分布不均。按最壞情況估計,這種方法就多做了幾次。為了使最壞情況的投擲數最小,我們希望無論臨界段在哪里,總的投擲數都不變,也就是說投擲數均勻分布。

     接下來的解決方案就很容易想出了:既然第一步(確定臨界段)的投擲數增加不可避免,我們就讓第二步(確定臨界層)的投擲數隨着第一步的次數增加而減少。第一步的投擲數是一次一次增加的,那就讓第二步的投擲數一次一次減少。假設第一次投擲的層數是f,轉化成數學模型,就是要求f+(f-1)+...+2+1>=99,即f(f+1)/2>=99(第一次測試點選擇100層是無意義的,必然會碎,所以無任何測試價值,所以第一次測試點k是1-99中的一個數),解出結果等於14。丟下第一顆雞蛋的樓層就分別是 14 , 27 , 39 , 50 , 60 , 69 , 77 ,84 , 90 , 95 , 99 。

沒看懂呢?


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM