為什么volatile不能保證原子性而Atomic可以?


在上篇《非阻塞同步算法與CAS(Compare and Swap)無鎖算法》中講到在Java中long賦值不是原子操作,因為先寫32位,再寫后32位,分兩步操作,而AtomicLong賦值是原子操作,為什么?為什么volatile能替代簡單的鎖,卻不能保證原子性?這里面涉及volatile,是java中的一個我覺得這個詞在Java規范中從未被解釋清楚的神奇關鍵詞,在Sun的JDK官方文檔是這樣形容volatile的:

The Java programming language provides a second mechanism, volatile fields, that is more convenient than locking for some purposes. A field may be declared volatile, in which case the Java Memory Model ensures that all threads see a consistent value for the variable.

意思就是說,如果一個變量加了volatile關鍵字,就會告訴編譯器和JVM的內存模型:這個變量是對所有線程共享的、可見的,每次jvm都會讀取最新寫入的值並使其最新值在所有CPU可見。volatile似乎是有時候可以代替簡單的鎖,似乎加了volatile關鍵字就省掉了鎖。但又說volatile不能保證原子性(java程序員很熟悉這句話:volatile僅僅用來保證該變量對所有線程的可見性,但不保證原子性)。這不是互相矛盾嗎?

不要將volatile用在getAndOperate場合,僅僅set或者get的場景是適合volatile的

不要將volatile用在getAndOperate場合(這種場合不原子,需要再加鎖),僅僅set或者get的場景是適合volatile的

volatile沒有原子性舉例:AtomicInteger自增

例如你讓一個volatile的integer自增(i++),其實要分成3步:1)讀取volatile變量值到local; 2)增加變量的值;3)把local的值寫回,讓其它的線程可見。這3步的jvm指令為:

mov    0xc(%r10),%r8d ; Load
inc    %r8d           ; Increment
mov    %r8d,0xc(%r10) ; Store
lock addl $0x0,(%rsp) ; StoreLoad Barrier

注意最后一步是內存屏障。

什么是內存屏障(Memory Barrier)?

內存屏障(memory barrier)是一個CPU指令。基本上,它是這樣一條指令: a) 確保一些特定操作執行的順序; b) 影響一些數據的可見性(可能是某些指令執行后的結果)。編譯器和CPU可以在保證輸出結果一樣的情況下對指令重排序,使性能得到優化。插入一個內存屏障,相當於告訴CPU和編譯器先於這個命令的必須先執行,后於這個命令的必須后執行。內存屏障另一個作用是強制更新一次不同CPU的緩存。例如,一個寫屏障會把這個屏障前寫入的數據刷新到緩存,這樣任何試圖讀取該數據的線程將得到最新值,而不用考慮到底是被哪個cpu核心或者哪顆CPU執行的。

內存屏障(memory barrier)和volatile什么關系?上面的虛擬機指令里面有提到,如果你的字段是volatile,Java內存模型將在寫操作后插入一個寫屏障指令,在讀操作前插入一個讀屏障指令。這意味着如果你對一個volatile字段進行寫操作,你必須知道:1、一旦你完成寫入,任何訪問這個字段的線程將會得到最新的值。2、在你寫入前,會保證所有之前發生的事已經發生,並且任何更新過的數據值也是可見的,因為內存屏障會把之前的寫入值都刷新到緩存。

volatile為什么沒有原子性?

明白了內存屏障(memory barrier)這個CPU指令,回到前面的JVM指令:從Load到store到內存屏障,一共4步,其中最后一步jvm讓這個最新的變量的值在所有線程可見,也就是最后一步讓所有的CPU內核都獲得了最新的值,但中間的幾步(從Load到Store)是不安全的,中間如果其他的CPU修改了值將會丟失。下面的測試代碼可以實際測試voaltile的自增沒有原子性:

    private static volatile long _longVal = 0;
    
	private static class LoopVolatile implements Runnable {
		public void run() {
			long val = 0;
			while (val < 10000000L) {
				_longVal++;
				val++;
			}
		}
	}
	
	private static class LoopVolatile2 implements Runnable {
		public void run() {
			long val = 0;
			while (val < 10000000L) {
				_longVal++;
				val++;
			}
		}
	}
	
	private  void testVolatile(){
	    Thread t1 = new Thread(new LoopVolatile());
		t1.start();
		
		Thread t2 = new Thread(new LoopVolatile2());
		t2.start();
		
        while (t1.isAlive() || t2.isAlive()) {
	    }

		System.out.println("final val is: " + _longVal);
	}

Output:-------------
	
final val is: 11223828
final val is: 17567127
final val is: 12912109

volatile沒有原子性舉例:singleton單例模式實現

這是一段線程不安全的singleton(單例模式)實現,盡管使用了volatile:

public class wrongsingleton {
	private static volatile wrongsingleton _instance = null; 

	private wrongsingleton() {}

	public static wrongsingleton getInstance() {

		if (_instance == null) {
			_instance = new wrongsingleton();
		}

		return _instance;
	}
}

下面的測試代碼可以測試出是線程不安全的:

public class wrongsingleton {
	private static volatile wrongsingleton _instance = null; 

	private wrongsingleton() {}

	public static wrongsingleton getInstance() {

		if (_instance == null) {
			_instance = new wrongsingleton();
			System.out.println("--initialized once.");
		}

		return _instance;
	}
}

private static void testInit(){
		
		Thread t1 = new Thread(new LoopInit());
		Thread t2 = new Thread(new LoopInit2());
		Thread t3 = new Thread(new LoopInit());
		Thread t4 = new Thread(new LoopInit2());
		t1.start();
		t2.start();
		t3.start();
		t4.start();
		
        while (t1.isAlive() || t2.isAlive() || t3.isAlive()|| t4.isAlive()) {
			
        }

	}
輸出:有時輸出"--initialized once."一次,有時輸出好幾次

原因自然和上面的例子是一樣的。因為volatile保證變量對線程的可見性,但不保證原子性

附:正確線程安全的單例模式寫法:

@ThreadSafe 
public class SafeLazyInitialization { 
   private static Resource resource; 
   public synchronized static Resource getInstance() { 
      if (resource == null) 
          resource = new Resource(); 
      return resource; 
    } 
} 

另外一種寫法:

@ThreadSafe 
public class EagerInitialization { 
  private static Resource resource = new Resource(); 
  public static Resource getResource() { return resource; } 
}

延遲初始化的寫法:

@ThreadSafe 
public class ResourceFactory { 
	private static class ResourceHolder { 
		public static Resource resource = new Resource(); 
	} 
	public static Resource getResource() { 
		return ResourceHolder.resource ; 
	} 
}

二次檢查鎖定/Double Checked Locking的寫法(反模式)

public class SingletonDemo {
	private static volatile SingletonDemo instance = null;//注意需要volatile
 
	private SingletonDemo() {	}
 
	public static SingletonDemo getInstance() {
		if (instance == null) { //二次檢查,比直接用獨占鎖效率高
               synchronized (SingletonDemo .class){
			        if (instance == null) {
                               instance = new SingletonDemo (); 
                    }
             }
		}
		return instance;
	}
}

為什么AtomicXXX具有原子性和可見性?

就拿AtomicLong來說,它既解決了上述的volatile的原子性沒有保證的問題,又具有可見性。它是如何做到的?當然就是上文《非阻塞同步算法與CAS(Compare and Swap)無鎖算法》提到的CAS(比較並交換)指令。 其實AtomicLong的源碼里也用到了volatile,但只是用來讀取或寫入,見源碼:

public class AtomicLong extends Number implements java.io.Serializable {
    private volatile long value;

    /**
     * Creates a new AtomicLong with the given initial value.
     *
     * @param initialValue the initial value
     */
    public AtomicLong(long initialValue) {
        value = initialValue;
    }

    /**
     * Creates a new AtomicLong with initial value {@code 0}.
     */
    public AtomicLong() {
    }

其CAS源碼核心代碼為:

int compare_and_swap (int* reg, int oldval, int newval) 
{
  ATOMIC();
  int old_reg_val = *reg;
  if (old_reg_val == oldval) 
     *reg = newval;
  END_ATOMIC();
  return old_reg_val;
}

虛擬機指令為:

mov    0xc(%r11),%eax       ; Load
mov    %eax,%r8d            
inc    %r8d                 ; Increment
lock cmpxchg %r8d,0xc(%r11) ; Compare and exchange

因為CAS是基於樂觀鎖的,也就是說當寫入的時候,如果寄存器舊值已經不等於現值,說明有其他CPU在修改,那就繼續嘗試。所以這就保證了操作的原子性。

ConcurrencyCAS


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM