一,簡介
該模塊為opencv的機器學習(machine learning,ml)代碼庫,包含各種機器學習算法:
0, class CvStatModel ; class CvMLData; struct CvParamGrid;
1,bayesian,Normal Bayes Classifier(貝葉斯分類);
2,K-Nearest Neighbour Classifier(K-鄰近算法);
3,SVM,support vector machine(支持向量機);
4,Expectation - Maximization (EM算法);
5,Decision Tree(決策樹);
6,Random Trees Classifier(隨機森林算法);
7,Extremely randomized trees Classifier(絕對隨機森林算法);
8, Boosted tree classifier (Boost樹算法);
9,Gradient Boosted Trees (梯度Boost樹算法);
10,ANN,Artificial Neural Networks(人工神經網絡);
二,分析
namespace cv { typedef CvStatModel StatModel; typedef CvParamGrid ParamGrid; typedef CvNormalBayesClassifier NormalBayesClassifier; typedef CvKNearest KNearest; typedef CvSVMParams SVMParams; typedef CvSVMKernel SVMKernel; typedef CvSVMSolver SVMSolver; typedef CvSVM SVM; typedef CvDTreeParams DTreeParams; typedef CvMLData TrainData; typedef CvDTree DecisionTree; typedef CvForestTree ForestTree; typedef CvRTParams RandomTreeParams; typedef CvRTrees RandomTrees; typedef CvERTreeTrainData ERTreeTRainData; typedef CvForestERTree ERTree; typedef CvERTrees ERTrees; typedef CvBoostParams BoostParams; typedef CvBoostTree BoostTree; typedef CvBoost Boost; typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams; typedef CvANN_MLP NeuralNet_MLP; typedef CvGBTreesParams GradientBoostingTreeParams; typedef CvGBTrees GradientBoostingTrees; template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj(); CV_EXPORTS bool initModule_ml(void); }
三,總結
opencv_ml模塊中包含一些常見的機器學習算法,集成了一些目前比較優秀的算法庫如libsvm等。不僅可以用於圖像,也可以用於其他問題中。