一、Hive簡介
Hive是基於Hadoop的一個數據倉庫工具,可以將結構化的數據文件映射為一張數據庫表,並提供完整的sql查詢功能,可以將sql語句轉換為MapReduce任務進行運行。其優點是學習成本低,可以通過類SQL語句快速實現簡單的MapReduce統計,不必開發專門的MapReduce應用,十分適合數據倉庫的統計分析。
Hvie是建立在Hadoop上的數據倉庫基礎架構。它提供了一系列的工具,可以用來進行數據提取轉化加載(ETL),這是一種可以存儲、查詢和分析存儲在Hadoop中的大規模數據的機制。Hive定義了簡單的類SQL查詢語句,稱為HQL,它允許熟悉SQL的用戶查詢數據。同時,這個語言也允許熟悉MapReduce開發者的開發自定義的mapper和reducer來處理內建的mapper和reducer無法完成的復雜的分析工作。
由於Hive采用了SQL的查詢語言HQL,因此很容易將Hive理解為數據庫。其實從結構上來看,Hive和數據庫除了擁有類似的查詢語言,再無類似之處。本文將從多個方面來闡述Hive和數據庫的差異。數據庫可以用在Online的應用中,但是Hive是為數據倉庫而設計的,清楚這一點,有助於從應用角度理解Hive的特性。
查詢語言 | HQL | SQL |
數據存儲位置 | HDFS | Raw Device或者Local FS |
數據格式 | 用戶定義 | 系統決定 |
數據更新 | 不支持 | 支持 |
索引 | 無 | 有 |
執行 | Mapreduce | Executor |
執行延遲 | 高 | 低 |
可擴展性 | 高 | 低 |
數據規模 | 大 | 小 |
•查詢語言:由於SQL被廣泛的應用在數據倉庫中,因此,專門針對Hive的特性設計了類SQL的查詢語言HQL。熟悉SQL開發的開發者可以很方便的使用Hive進行開發。
•數據存儲位置:Hive是建立在Hadoop之上的,所有Hive的數據都是存儲在HDFS中的。而數據庫則可以將數據保存在塊設備或者本地文件系統中。
•數據格式:Hive中沒有定義專門的數據格式,數據格式可以由用戶指定,用戶定義數據格式需要指定三個屬性:列分隔符(通常為空格、"\t"、"\x001")、行分隔符("\n")以及讀取文件數據的方法(Hive中默認有三個文件格式TextFile、SequenceFile以及RCFile)。由於在加載數據的過程中,不需要從用戶數據格式到Hive定義的數據格式的轉換,因此,Hive在加載的過程中不會對數據本身進行任何修改,而只是將數據內容復制或者移動到相應的HDFS目錄中。而在數據庫中,不同的數據庫有不同的存儲引擎,定義了自己的數據格式。所有數據都會按照一定的組織存儲,因此,數據庫加載數據的過程會比較耗時。
•數據更新:由於Hive是針對數據倉庫應用設計的,而數據倉庫的內容是讀多寫少的。因此,Hive中不支持對數據的改寫和添加,所有的數據都是在加載的時候中確定好的。而數據庫中的數據通常是需要經常進行修改的,因此可以使用INSERT INTO...VALUES添加數據,使用UPDATE...SET修改數據。
•索引:之前已經說過,Hive在加載數據的過程中不會對數據進行任何處理,甚至不會對數據進行掃描,因此也沒有對數據中的某些Key建立索引。Hive要訪問數據中滿足條件的特定值時,需要暴力掃描整個數據,因此訪問延遲較高。由於MapReduce的引入,Hive可以並行訪問數據,因此即使沒有索引,對於大數據量的訪問,Hive仍然可以體現出優勢。數據庫中,通常會針對一個或幾個列建立索引,因此對於少量的特定條件的數據的訪問,數據庫可以有很高的效率,較低的延遲。由於數據的訪問延遲較高,決定了Hive不適合在線數據查詢。
•執行:Hive中大多數查詢的執行是通過Hadoop提供的MapReduce來實現的(類似select * from tbl的查詢不需要MapReduce)。而數據庫通常有自己的執行引擎。
•執行延遲:之前提到,Hive在查詢數據的時候,由於沒有索引,需要掃描整個表,因此延遲較高。另外一個導致Hive執行延遲高的因素是MapReduce框架。由於MapReduce本身具有較高的延遲,因此在利用MapReduce執行Hive查詢時,也會有較高的延遲。相對的,數據庫的執行延遲較低。當然,這個低是有條件的,即數據規模較小,當數據規模大到超過數據庫的處理能力的時候,Hive的並行計算顯然能體現出優勢。
•可擴展性:由於Hive是建立在Hadoop之上的,因此Hive的可擴展性是和Hadoop的可擴展性是一致的。而數據庫由於ACID語義的嚴格限制,擴展性非常有限。目前最先進的並行數據庫Oracle在理論上的擴展能力也只有100台左右。
•數據規模:由於Hive建立在集群上並可以利用MapReduce進行並行計算,因此可以支持很大規模的數據;對應的,數據庫可以支持的數據規模較小。