HDU 4738 Caocao's Bridges (2013杭州網絡賽1001題,連通圖,求橋)


Caocao's Bridges

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 194    Accepted Submission(s): 89


Problem Description
Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he wouldn't give up. Caocao's army still was not good at water battles, so he came up with another idea. He built many islands in the Changjiang river, and based on those islands, Caocao's army could easily attack Zhou Yu's troop. Caocao also built bridges connecting islands. If all islands were connected by bridges, Caocao's army could be deployed very conveniently among those islands. Zhou Yu couldn't stand with that, so he wanted to destroy some Caocao's bridges so one or more islands would be seperated from other islands. But Zhou Yu had only one bomb which was left by Zhuge Liang, so he could only destroy one bridge. Zhou Yu must send someone carrying the bomb to destroy the bridge. There might be guards on bridges. The soldier number of the bombing team couldn't be less than the guard number of a bridge, or the mission would fail. Please figure out as least how many soldiers Zhou Yu have to sent to complete the island seperating mission.
 

 

Input
There are no more than 12 test cases.

In each test case:

The first line contains two integers, N and M, meaning that there are N islands and M bridges. All the islands are numbered from 1 to N. ( 2 <= N <= 1000, 0 < M <= N 2 )

Next M lines describes M bridges. Each line contains three integers U,V and W, meaning that there is a bridge connecting island U and island V, and there are W guards on that bridge. ( U ≠ V and 0 <= W <= 10,000 )

The input ends with N = 0 and M = 0.
 

 

Output
For each test case, print the minimum soldier number Zhou Yu had to send to complete the mission. If Zhou Yu couldn't succeed any way, print -1 instead.
 

 

Sample Input
3 3 1 2 7 2 3 4 3 1 4 3 2 1 2 7 2 3 4 0 0
 

 

Sample Output
-1 4
 

 

Source
 

 

Recommend
liuyiding
 

 

 這題的意思就是求出所有的橋,然后輸出橋的權值的最小值。

 

但是坑點比較多。

如果一開始是不連通的,輸出0.

圖有重邊,需要處理。

還有如果取到的最小值是0的話,要輸出1,表示要派一個人過去。

 

  1 /* ***********************************************
  2 Author        :kuangbin
  3 Created Time  :2013/9/15 星期日 12:11:49
  4 File Name     :2013杭州網絡賽\1001.cpp
  5 ************************************************ */
  6 
  7 #pragma comment(linker, "/STACK:1024000000,1024000000")
  8 #include <stdio.h>
  9 #include <string.h>
 10 #include <iostream>
 11 #include <algorithm>
 12 #include <vector>
 13 #include <queue>
 14 #include <set>
 15 #include <map>
 16 #include <string>
 17 #include <math.h>
 18 #include <stdlib.h>
 19 #include <time.h>
 20 using namespace std;
 21 const int INF = 0x3f3f3f3f;
 22 /*
 23 *  求 無向圖的割點和橋
 24 *  可以找出割點和橋,求刪掉每個點后增加的連通塊。
 25 *  需要注意重邊的處理,可以先用矩陣存,再轉鄰接表,或者進行判重
 26 */
 27 const int MAXN = 10010;
 28 const int MAXM = 2000010;
 29 struct Edge
 30 {
 31     int to,next;
 32     int w;
 33     bool cut;//是否為橋的標記
 34 }edge[MAXM];
 35 int head[MAXN],tot;
 36 int Low[MAXN],DFN[MAXN],Stack[MAXN];
 37 int Index,top;
 38 bool Instack[MAXN];
 39 bool cut[MAXN];
 40 int add_block[MAXN];//刪除一個點后增加的連通塊
 41 int bridge;
 42 
 43 void addedge(int u,int v,int w)
 44 {
 45     edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut = false;
 46     edge[tot].w = w;
 47     head[u] = tot++;
 48 }
 49 
 50 
 51 void Tarjan(int u,int pre)
 52 {
 53     int v;
 54     Low[u] = DFN[u] = ++Index;
 55     Stack[top++] = u;
 56     Instack[u] = true;
 57     int son = 0;
 58     int pre_num = 0;
 59     for(int i = head[u];i != -1;i = edge[i].next)
 60     {
 61         v = edge[i].to;
 62         if(v == pre && pre_num == 0)
 63         {
 64             pre_num++;
 65             continue;
 66 
 67         }
 68         if( !DFN[v] )
 69         {
 70             son++;
 71             Tarjan(v,u);
 72             if(Low[u] > Low[v])Low[u] = Low[v];
 73             // 74             //一條無向邊(u,v)是橋,當且僅當(u,v)為樹枝邊,且滿足DFS(u)<Low(v)。
 75             if(Low[v] > DFN[u])
 76             {
 77                 bridge++;
 78                 edge[i].cut = true;
 79                 edge[i^1].cut = true;
 80             }
 81             //割點
 82             //一個頂點u是割點,當且僅當滿足(1)或(2) (1) u為樹根,且u有多於一個子樹。
 83             //(2) u不為樹根,且滿足存在(u,v)為樹枝邊(或稱父子邊,
 84             //即u為v在搜索樹中的父親),使得DFS(u)<=Low(v)
 85             if(u != pre && Low[v] >= DFN[u])//不是樹根
 86             {
 87                 cut[u] = true;
 88                 add_block[u]++;
 89             }
 90         }
 91         else if( Low[u] > DFN[v])
 92              Low[u] = DFN[v];
 93     }
 94     //樹根,分支數大於1
 95     if(u == pre && son > 1)cut[u] = true;
 96     if(u == pre)add_block[u] = son - 1;
 97     Instack[u] = false;
 98     top--;
 99 }
100 int  solve(int N)
101 {
102     memset(DFN,0,sizeof(DFN));
103     memset(Instack,false,sizeof(Instack));
104     memset(add_block,0,sizeof(add_block));
105     memset(cut,false,sizeof(cut));
106     Index = top = 0;
107     bridge = 0;
108     for(int i = 1;i <= N;i++)
109         if( !DFN[i] )
110             Tarjan(i,i);
111     int ret = INF;
112     for(int u = 1; u <= N;u++)
113         for(int i = head[u]; i != -1;i = edge[i].next)
114             if(edge[i].cut)
115                 ret = min(ret,edge[i].w);
116     if(ret == INF)ret = -1;
117     if(ret == 0)ret++;
118     return ret;
119 }
120 int F[MAXN];
121 int find(int x)
122 {
123     if(F[x] == -1)return x;
124     else return F[x] = find(F[x]);
125 }
126 void init()
127 {
128     memset(F,-1,sizeof(F));
129     tot = 0;
130     memset(head,-1,sizeof(head));
131 }
132 void bing(int u,int v)
133 {
134     int t1 = find(u);
135     int t2 = find(v);
136     if(t1 != t2)F[t1] = t2;
137 }
138 int main()
139 {
140     //freopen("in.txt","r",stdin);
141     //freopen("out.txt","w",stdout);
142     int n,m;
143     while(scanf("%d%d",&n,&m) == 2)
144     {
145         if(n == 0 && m == 0)break;
146         int u,v,w;
147         init();
148         while(m--)
149         {
150             scanf("%d%d%d",&u,&v,&w);
151             if(u == v)continue;
152             addedge(u,v,w);
153             addedge(v,u,w);
154             bing(u,v);
155         }
156         bool flag = true;
157         for(int i = 1; i <= n;i++)
158             if(find(i) != find(1))
159                 flag = false;
160         if(!flag)
161         {
162             printf("0\n");
163             continue;
164         }
165         printf("%d\n",solve(n));
166     }
167     return 0;
168 }

 

 

 

 

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM