題目鏈接:
http://www.spoj.com/problems/QTREE/
375. Query on a treeProblem code: QTREE |
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
We will ask you to perfrom some instructions of the following form:
- CHANGE i ti : change the cost of the i-th edge to ti
or - QUERY a b : ask for the maximum edge cost on the path from node a to node b
Input
The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000),
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
- The next lines contain instructions "CHANGE i ti" or "QUERY a b",
- The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.
Output
For each "QUERY" operation, write one integer representing its result.
Example
Input: 1 3 1 2 1 2 3 2 QUERY 1 2 CHANGE 1 3 QUERY 1 2 DONE Output: 1 3
樹鏈剖分入門題:
1 /* ********************************************** 2 Author : kuangbin 3 Created Time: 2013/8/11 22:00:02 4 File Name : F:\2013ACM練習\專題學習\數鏈剖分\SPOJ_QTREE.cpp 5 *********************************************** */ 6 7 #include <stdio.h> 8 #include <string.h> 9 #include <iostream> 10 #include <algorithm> 11 #include <vector> 12 #include <queue> 13 #include <set> 14 #include <map> 15 #include <string> 16 #include <math.h> 17 #include <stdlib.h> 18 using namespace std; 19 20 const int MAXN = 10010; 21 struct Edge 22 { 23 int to,next; 24 }edge[MAXN*2]; 25 int head[MAXN],tot; 26 int top[MAXN];//top[v]表示v所在的重鏈的頂端節點 27 int fa[MAXN]; //父親節點 28 int deep[MAXN];//深度 29 int num[MAXN];//num[v]表示以v為根的子樹的節點數 30 int p[MAXN];//p[v]表示v與其父親節點的連邊在線段樹中的位置 31 int fp[MAXN];//和p數組相反 32 int son[MAXN];//重兒子 33 int pos; 34 void init() 35 { 36 tot = 0; 37 memset(head,-1,sizeof(head)); 38 pos = 0; 39 memset(son,-1,sizeof(son)); 40 } 41 void addedge(int u,int v) 42 { 43 edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++; 44 } 45 void dfs1(int u,int pre,int d) //第一遍dfs求出fa,deep,num,son 46 { 47 deep[u] = d; 48 fa[u] = pre; 49 num[u] = 1; 50 for(int i = head[u];i != -1; i = edge[i].next) 51 { 52 int v = edge[i].to; 53 if(v != pre) 54 { 55 dfs1(v,u,d+1); 56 num[u] += num[v]; 57 if(son[u] == -1 || num[v] > num[son[u]]) 58 son[u] = v; 59 } 60 } 61 } 62 void getpos(int u,int sp) //第二遍dfs求出top和p 63 { 64 top[u] = sp; 65 if(son[u] != -1) 66 { 67 p[u] = pos++; 68 fp[p[u]] = u; 69 getpos(son[u],sp); 70 } 71 else 72 { 73 p[u] = pos++; 74 fp[p[u]] = u; 75 return; 76 } 77 for(int i = head[u] ; i != -1; i = edge[i].next) 78 { 79 int v = edge[i].to; 80 if(v != son[u] && v != fa[u]) 81 getpos(v,v); 82 } 83 } 84 85 //線段樹 86 struct Node 87 { 88 int l,r; 89 int Max; 90 }segTree[MAXN*3]; 91 void build(int i,int l,int r) 92 { 93 segTree[i].l = l; 94 segTree[i].r = r; 95 segTree[i].Max = 0; 96 if(l == r)return; 97 int mid = (l+r)/2; 98 build(i<<1,l,mid); 99 build((i<<1)|1,mid+1,r); 100 } 101 void push_up(int i) 102 { 103 segTree[i].Max = max(segTree[i<<1].Max,segTree[(i<<1)|1].Max); 104 } 105 void update(int i,int k,int val) // 更新線段樹的第k個值為val 106 { 107 if(segTree[i].l == k && segTree[i].r == k) 108 { 109 segTree[i].Max = val; 110 return; 111 } 112 int mid = (segTree[i].l + segTree[i].r)/2; 113 if(k <= mid)update(i<<1,k,val); 114 else update((i<<1)|1,k,val); 115 push_up(i); 116 } 117 int query(int i,int l,int r) //查詢線段樹中[l,r] 的最大值 118 { 119 if(segTree[i].l == l && segTree[i].r == r) 120 return segTree[i].Max; 121 int mid = (segTree[i].l + segTree[i].r)/2; 122 if(r <= mid)return query(i<<1,l,r); 123 else if(l > mid)return query((i<<1)|1,l,r); 124 else return max(query(i<<1,l,mid),query((i<<1)|1,mid+1,r)); 125 } 126 int find(int u,int v)//查詢u->v邊的最大值 127 { 128 int f1 = top[u], f2 = top[v]; 129 int tmp = 0; 130 while(f1 != f2) 131 { 132 if(deep[f1] < deep[f2]) 133 { 134 swap(f1,f2); 135 swap(u,v); 136 } 137 tmp = max(tmp,query(1,p[f1],p[u])); 138 u = fa[f1]; f1 = top[u]; 139 } 140 if(u == v)return tmp; 141 if(deep[u] > deep[v]) swap(u,v); 142 return max(tmp,query(1,p[son[u]],p[v])); 143 } 144 int e[MAXN][3]; 145 int main() 146 { 147 //freopen("in.txt","r",stdin); 148 //freopen("out.txt","w",stdout); 149 int T; 150 int n; 151 scanf("%d",&T); 152 while(T--) 153 { 154 init(); 155 scanf("%d",&n); 156 for(int i = 0;i < n-1;i++) 157 { 158 scanf("%d%d%d",&e[i][0],&e[i][1],&e[i][2]); 159 addedge(e[i][0],e[i][1]); 160 addedge(e[i][1],e[i][0]); 161 } 162 dfs1(1,0,0); 163 getpos(1,1); 164 build(1,0,pos-1); 165 for(int i = 0;i < n-1; i++) 166 { 167 if(deep[e[i][0]] > deep[e[i][1]]) 168 swap(e[i][0],e[i][1]); 169 update(1,p[e[i][1]],e[i][2]); 170 } 171 char op[10]; 172 int u,v; 173 while(scanf("%s",op) == 1) 174 { 175 if(op[0] == 'D')break; 176 scanf("%d%d",&u,&v); 177 if(op[0] == 'Q') 178 printf("%d\n",find(u,v)); 179 else update(1,p[e[u-1][1]],v); 180 } 181 } 182 return 0; 183 }