話說好久沒寫題(解)了。。
先貼份題解:http://wjmzbmr.com/archives/hnoi-2013-%E9%A2%98%E8%A7%A3/(LJ神題解。。Lazycal表示看不懂。。)
以下是Lazycal's題解:
[bzoj3139][Hnoi2013]比賽
對於一個得分序列,可以發現不論如何排列,答案都是一樣的。而且n的得分序列可以由n-1的推來。於是,我們可以搜索第一個隊伍與其他隊伍的比賽結果,由比賽結果得出n-1支隊伍的得分序列,遞歸搜索。然后用每個隊伍的得分和隊伍個數作為狀態,對每個狀態進行壓縮,利用最小表示法。由於每個隊伍最多只能得27分,所以狀態總數不超過28^9/(9!)*2(因為只能存在一個0)為千萬級別,可以接受。

[bzoj3140][Hnoi2013]消毒
假設我們選擇x*y*z(x<y<z)這樣一塊區域,則費用為x。也就是說,我們可以視作x次的1*y*z。又因為a*b*c<=5000,所以min{a,b,c}<=17。不妨設min{a,b,c}=a。因此答案<=a。一開始還以為只要把需要消的1*b*c消了就可以了。結果去網上查了題解才知道這樣並不一定是最優的……
正解應當是用2^a枚舉哪個1*b*c要取,然后轉化成二維的最小棋盤覆蓋。最小棋盤覆蓋就是用最少的行或列把指定點覆蓋。沒錯,這個我也不會……
膜拜了abcdabcd987的題解后才明白。其實是最小點覆蓋的模型。只要把行和列拆開,作為二分圖的X和Y頂點,然后對於需要覆蓋的點從所屬的行連向列即可。
/************************************************************** Problem: 3140 User: lazycal Language: C++ Result: Accepted Time:1192 ms Memory:1320 kb ****************************************************************/ #include <cstdio> #include <algorithm> const int N=5000+9; int ans,a,b,c,T,vis[N],match[N],num,son[N],ec,times; bool t[N]; struct Edge{int link,next;}es[N*10]; inline void addedge(const int x,const int y) { es[++ec].next=son[x]; es[ec].link=y; son[x]=ec; } struct point { int x,y,z; point(const int _x=0,const int _y=0,const int _z=0):x(_x),y(_y),z(_z) { if (a<=b && a<=c) std::swap(x,x); else if (b<=a && b<=c) std::swap(x,y); else std::swap(x,z); } }one[N]; bool find(const int u) { for (int i=son[u];i;i=es[i].next) { const int v=es[i].link; if (vis[v]==times) continue; vis[v]=times; if (!match[v]/*BUGS!!!*/ || find(match[v])) { match[v]=u; return 1; } } return 0; } void dfs(const int step,int cnt) { if (cnt>=ans) return; if (step>a) { ec=0; for (int i=1;i<=b;++i) son[i]=0; for (int i=0;i<num;++i) if (!t[one[i].x]) addedge(one[i].y,one[i].z); for (int i=1;i<=c;++i) match[i]=0; for (int i=1;i<=b;++i) { ++times; if ((cnt+=find(i))>=ans) return; } ans=cnt; return; } t[step]=1; dfs(step+1,cnt+1); t[step]=0; dfs(step+1,cnt); } int main() { #ifndef ONLINE_JUDGE freopen("3140.in","r",stdin); freopen("3140.out","w",stdout); #endif scanf("%d",&T); while (T--) { scanf("%d%d%d",&a,&b,&c); num=0; for (int i=1;i<=a;++i) for (int j=1;j<=b;++j) for (int k=1,x;k<=c;++k) { scanf("%d",&x); if (x) one[num++]=point(i,j,k); } if (a<=b && a<=c) std::swap(a,a); else if (b<=a && b<=c) std::swap(a,b); else std::swap(a,c); ans=a; dfs(1,0); printf("%d\n",ans); } }
[bzoj3141][Hnoi2013]旅行
這題非常神!的的確確是個好題!
這題我是看着http://tieba.baidu.com/p/2283515454?pid=31800289139&cid=0#318002891399樓的回復以及http://cxjyxx.me/?p=329的題解才懂的……表示自己太弱了……
注:以下a[i],b[i],n,m如題目所述。
首先我們考慮特殊情況,並將b[i]為0的項賦值為-1,令S為所有數之和:
- 全1。此時不難發現答案是|S|/m上取整。
- 全-1。同上,為|S|/m上取整。
- 一半1,一半-1。我們將較少的1or-1與另一邊抵消。如 1 1 1 1 1 -1 -1 ------> 1 1 1 (1 1 -1 -1),這樣就跟上面的大概一樣了。
- 其它情況也差不多。
猜測:ans=|S|/m上取整(S!=0)。
答案:
- ans>=|S|/m上取整,這很顯然。
- m<=|S|:不妨設S>0,則將所有的-1根附近的1消掉,最終便只剩1了,ans=|S|/m上取整。
- m>|S|:令s[i]=b[i]+b[i+1]+...+b[n]
- S=0:
- 若s[i]=0的個數>=m,則ans=0,此時取最后一個點和后m-1個s[i]=0的點即可。
- 否則ans=1。因為若ans要為0,則所選的最后一個點必須滿足s[i]=0(因為s[i]即為最后的旅途),倒二個也是,依此類推,所選的點s[i]都為0。但s[i]=0的個數<m,所以ans>=1。數據構造:觀察s數組,必定是0 1……1 0……0 1……1 0。也就是像一個個小山一樣。每次取一條等高線,就可符合題意。
- S!=0:我們首先選出|S|個數,這步同2。剩下的便是一個個與上一個問題一樣的子問題了。
- S=0:
字典序:
- S=0 且 m<= s[i]=0的個數:此時只要在s[i]=0的所有i中跑單調隊列即可。即維護隊列里面a[i]從小到大,然后按照輸入順序入隊,只要后面s[i]=0的個數還足夠,就一直入隊。
- 其它情況:這個比較麻煩。假設我們上一次選了a[last],則下次的i需滿足abs(s[last+1]-s[i])<=ans 且 s[i+1]/m'上取整<=ans(m'為剩下的天數) 且 n-i>=m,就相當於一個子問題。於是,可以按s[i]分類,為每個s[i]開一個隊列,維護隊列a[i]單調遞増,只要后面的個數夠,就不斷入隊。選的時候從s[last]-ans到s[last]+ans枚舉,先把下標<last的彈出,然后選出a[i]最小的一個。詳見代碼。
/************************************************************** Problem: 3141 User: lazycal Language: C++ Result: Accepted Time:2696 ms Memory:41820 kb ****************************************************************/ #include <cstdio> #include <cstdlib> #include <cmath> #include <queue> #define _(x) static_cast<double>(x) #define __(x) static_cast<int>(x) const int N=500000+9; int n,m,sum[N],cnt[N],a[N],tot; struct node{int l,r,x;}t[N*2]; int newnode(const int l,const int r,const int x) { t[++tot].x=x; t[tot].l=l; t[tot].r=r; return tot; } class Queue { int be,en,len; public: void push_back(int x) { if (!len) be=en=newnode(0,0,x); else t[en].r=newnode(en,0,x),en=t[en].r; ++len; } bool empty(){return !len;} int front(){return t[be].x;} int back(){return t[en].x;} void pop_back() { en=t[en].l; --len; } void pop_front() { be=t[be].r; --len; } void push(int x) { while (!empty() && a[back()]>a[x]) pop_back(); push_back(x); } }Qu[N*2],*qu=Qu+N,Q[N*2],*q=Q+N; int Min(const int x,const int y) { if (a[x]<a[y]) return x; return y; } int main() { #ifndef ONLINE_JUDGE freopen("3141.in","r",stdin); freopen("3141.out","w",stdout); #endif scanf("%d%d",&n,&m); for (int i=1;i<=n;++i) { scanf("%d%d",a+i,sum+i); if (!sum[i]) sum[i] = -1; } for (int i=n-1;i;--i) sum[i] += sum[i+1]; for (int i=n;i;cnt[i] += cnt[i+1], --i) if (!sum[i]) ++cnt[i]; int S = sum[1], d = S ? (abs(S) - 1)/m + 1 : cnt[1] < m; cnt[n+1]=-1; if (!d) { for (int i=1,j=2; i<m; ++i) { for (; cnt[j+1]>=m-i; ++j) if (!sum[j+1]) q[0].push(j); printf("%d ",a[q[0].front()]); q[0].pop_front(); } }else { a[n+1]=n+1; int la = 0; for (int i=2; i<=n; ++i) qu[sum[i]].push_back(i-1); for (int i=1; i<m; ++i) { int ans = n+1; for (int j=sum[la+1]-d; j<=sum[la+1]+d; ++j) { if (__(ceil(_(abs(j))/(m-i))) > d) continue; for (; !qu[j].empty() && n-qu[j].front() >= m-i; qu[j].pop_front()) /*printf("test: %d\n",qu[j].front()),*/if (qu[j].front() > la) q[j].push(qu[j].front()); for (; ! q[j].empty() && q[j].front() <= la; q[j].pop_front()); if (!q[j].empty()) ans = Min(ans,q[j].front()); } la = ans; printf("%d ",a[ans]); } } printf("%d",a[n]); }
[bzoj3142][Hnoi2013]數列
這題也不會……實在是太弱了
令a[i]為相鄰兩天股票價格之差,可以發現對於一個a序列,對ans的貢獻是N-a[1]-a[2]-...-a[K-1]。於是答案就是N*M^(K-1)-M*(M+1)/2*M^(K-2)*(K-1)
/************************************************************** Problem: 3142 User: lazycal Language: C++ Result: Accepted Time:0 ms Memory:804 kb ****************************************************************/ #include <cstdio> long long P; long long power(long long x,int k) { long long res=1; for (;k;x=x*x%P,k/=2) if (k&1) res=res*x%P; return res; } int main() { #ifndef ONLINE_JUDGE freopen("3142.in","r",stdin); freopen("3142.out","w",stdout); #endif //N*M^(K-1)-M*(M+1)/2*M^(K-2)*(K-1) long long N,K,M; scanf("%lld%lld%lld%lld",&N,&K,&M,&P); if (K==1) {printf("%lld\n",N%P);return 0;} long long tmp=power(M,K-2),ans=(N%P*tmp%P*M%P-M*(M+1)/2%P*tmp%P*(K-1)%P)%P; printf("%lld\n",(ans+P)%P); }
[bzoj3143][Hnoi2013]游走
這題……不講了……高斯消元……
/************************************************************** Problem: 3143 User: lazycal Language: C++ Result: Accepted Time:1008 ms Memory:6880 kb ****************************************************************/ #include <cstdio> #include <cmath> #include <algorithm> const int N=500+9,M=N*N; const double EPS = 1e-9; struct edge{int u,v;}es[M]; double times[M],a[N][N]; int d[N],n,m; void Guass(int equ,int val) { for (int col = 1, row = 1; col <= val; ++col, ++row) { int maxr = row; for (int i = row + 1; i <= equ; ++i) if (fabs(a[i][col]) > fabs(a[maxr][col])) maxr = i; if (maxr != row) for (int i = col; i <= val + 1; ++i) std::swap(a[maxr][i],a[row][i]); for (int i = col + 1; i <= val + 1; ++i) a[row][i] /= a[row][col]; a[row][col] = 1; for (int i = 1; i <= equ; ++i) if (i != row) { for (int j = col + 1; j <= val + 1; ++j) a[i][j] -= a[i][col]*a[row][j]; a[i][col]=0; } } } int main() { #ifndef ONLINE_JUDGE freopen("3143.in","r",stdin); freopen("3143.out","w",stdout); #endif scanf("%d%d",&n,&m); for (int i=1;i<=m;++i) { scanf("%d%d",&es[i].u,&es[i].v); ++d[es[i].u]; ++d[es[i].v]; } for (int i=1;i<=m;++i) { a[es[i].u][es[i].v]=-static_cast<double>(1)/d[es[i].v]; a[es[i].v][es[i].u]=-static_cast<double>(1)/d[es[i].u]; } for (int i=1;i<n;++i) a[i][i]=1,a[i][n]=0; a[n][n]=0; a[1][n]=1; Guass(n-1,n-1); for (int i=1;i<=m;++i) times[i]=a[es[i].u][n]/d[es[i].u]+a[es[i].v][n]/d[es[i].v]; std::sort(times+1,times+1+m); double ans=.0; for (int i=1;i<=m;++i) ans+=times[i]*(m-i+1); printf("%.3f\n",ans); }
[bzoj3144][Hnoi2013]切糕
網絡流最小割。增加一層,然后每層向上層連一條邊,容量為下層點權。對於第k層的點,每個點都向k-d層連一條容量為無窮大的邊。源向底層每個點連容量為無窮大的邊,頂層向匯連容量為無窮大的邊。然后跑一遍最小割。
/************************************************************** Problem: 3144 User: lazycal Language: C++ Result: Accepted Time:964 ms Memory:9260 kb ****************************************************************/ #include <cstdio> #include <cstring> #include <algorithm> const int N=65602,INF=0x7fffffff; int src,sink,Vc,cnt[N],dis[N],ec,p,q,r,d,son[N]; struct Edge { int next,v,f; }es[N*10]; inline int node(const int x,const int y,const int z){return x*p*q+y*q+z;} inline void addedge(const int x,const int y,const int z) { es[ec].v=y; es[ec].f=z; es[ec].next=son[x]; son[x]=ec++; } inline void Addedge(const int x,const int y,const int z){addedge(x,y,z);addedge(y,x,0);} int sap(const int u,const int aug) { if (u==sink) return aug; int sum=0,mindis=Vc; for (int i=son[u];i!=-1;i=es[i].next) { const int v=es[i].v; if (es[i].f && dis[v]+1==dis[u]) { int t=sap(v,std::min(aug-sum,es[i].f)); sum+=t; es[i].f-=t; es[i^1].f+=t; if (sum==aug || dis[src]>=Vc) return sum; } if (es[i].f && mindis>dis[v]) mindis=dis[v]; } if (!sum) { if (!--cnt[dis[u]]) dis[src]=Vc; ++cnt[dis[u]=mindis+1]; } return sum; } int max_flow() { cnt[0]=Vc; int flow=0; while (dis[src]<Vc) flow+=sap(src,INF); return flow; } int main() { #ifndef ONLINE_JUDGE freopen("3144.in","r",stdin); freopen("3144.out","w",stdout); #endif scanf("%d%d%d%d",&p,&q,&r,&d); memset(son,-1,sizeof son); for (int i=0;i<r;++i) for (int j=0;j<p;++j) for (int k=0,x;k<q;++k) { scanf("%d",&x); Addedge(node(i,j,k),node(i+1,j,k),x); if (i-d>=0) { if (j-1>=0) Addedge(node(i,j,k),node(i-d,j-1,k),INF); if (j+1<p) Addedge(node(i,j,k),node(i-d,j+1,k),INF); if (k-1>=0) Addedge(node(i,j,k),node(i-d,j,k-1),INF); if (k+1<q) Addedge(node(i,j,k),node(i-d,j,k+1),INF); } } Vc=(r+1)*p*q+2,src=(r+1)*p*q,sink=(r+1)*p*q+1; for (int i=0;i<p;++i) for (int j=0;j<q;++j) Addedge(src,node(0,i,j),INF),Addedge(node(r,i,j),sink,INF); printf("%d\n",max_flow()); }