C#實現RTP數據包傳輸


閑暇時折騰IP網絡視頻監控系統,需要支持視頻幀數據包在網絡內的傳輸。
未采用H.264或MPEG4等編碼壓縮方式,直接使用Bitmap圖片。
由於對幀的准確到達要求不好,所以采用UDP傳輸。如果發生網絡丟包現象則直接將幀丟棄。
為了記錄數據包的傳輸順序和幀的時間戳,所以研究了下RFC3550協議,采用RTP包封裝視頻幀。
並未全面深究,所以未使用SSRC和CSRC,因為不確切了解其用意。不過目前的實現情況已經足夠了。

  1   /// <summary>
  2   /// RTP(RFC3550)協議數據包
  3   /// </summary>
  4   /// <remarks>
  5   /// The RTP header has the following format:
  6   ///  0                   1                   2                   3
  7   ///  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  8   /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  9   /// |V=2|P|X| CC    |M| PT          | sequence number               |
 10   /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 11   /// | timestamp                                                     |
 12   /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 13   /// | synchronization source (SSRC) identifier                      |
 14   /// +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
 15   /// | contributing source (CSRC) identifiers                        |
 16   /// | ....                                                          |
 17   /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 18   /// </remarks>
 19   public class RtpPacket
 20   {
 21     /// <summary>
 22     /// version (V): 2 bits
 23     /// RTP版本標識,當前規范定義值為2.
 24     /// This field identifies the version of RTP. The version defined by this specification is two (2).
 25     /// (The value 1 is used by the first draft version of RTP and the value 0 is used by the protocol
 26     /// initially implemented in the \vat" audio tool.)
 27     /// </summary>
 28     public int Version { get { return 2; } }
 29 
 30     /// <summary>
 31     /// padding (P):1 bit
 32     /// 如果設定padding,在報文的末端就會包含一個或者多個padding 字節,這不屬於payload。
 33     /// 最后一個字節的padding 有一個計數器,標識需要忽略多少個padding 字節(包括自己)。
 34     /// 一些加密算法可能需要固定塊長度的padding,或者是為了在更低層數據單元中攜帶一些RTP 報文。
 35     /// If the padding bit is set, the packet contains one or more additional padding octets at the
 36     /// end which are not part of the payload. The last octet of the padding contains a count of
 37     /// how many padding octets should be ignored, including itself. Padding may be needed by
 38     /// some encryption algorithms with fixed block sizes or for carrying several RTP packets in a
 39     /// lower-layer protocol data unit.
 40     /// </summary>
 41     public int Padding { get { return 0; } }
 42 
 43     /// <summary>
 44     /// extension (X):1 bit 
 45     /// 如果設定了extension 位,定長頭字段后面會有一個頭擴展。
 46     /// If the extension bit is set, the fixed header must be followed by exactly one header extensio.
 47     /// </summary>
 48     public int Extension { get { return 0; } }
 49 
 50     /// <summary>
 51     /// CSRC count (CC):4 bits 
 52     /// CSRC count 標識了定長頭字段中包含的CSRC identifier 的數量。
 53     /// The CSRC count contains the number of CSRC identifiers that follow the fixed header.
 54     /// </summary>
 55     public int CC { get { return 0; } }
 56 
 57     /// <summary>
 58     /// marker (M):1 bit 
 59     /// marker 是由一個profile 定義的。用來允許標識在像報文流中界定幀界等的事件。
 60     /// 一個profile 可能定義了附加的標識位或者通過修改payload type 域中的位數量來指定沒有標識位.
 61     /// The interpretation of the marker is defined by a profile. It is intended to allow significant
 62     /// events such as frame boundaries to be marked in the packet stream. A profile may define
 63     /// additional marker bits or specify that there is no marker bit by changing the number of bits
 64     /// in the payload type field.
 65     /// </summary>
 66     public int Marker { get { return 0; } }
 67 
 68     /// <summary>
 69     /// payload type (PT):7 bits
 70     /// 這個字段定一個RTPpayload 的格式和在應用中定義解釋。
 71     /// profile 可能指定一個從payload type 碼字到payload format 的默認靜態映射。
 72     /// 也可以通過non-RTP 方法來定義附加的payload type 碼字(見第3 章)。
 73     /// 在 RFC 3551[1]中定義了一系列的默認音視頻映射。
 74     /// 一個RTP 源有可能在會話中改變payload type,但是這個域在復用獨立的媒體時是不同的。(見5.2 節)。
 75     /// 接收者必須忽略它不識別的payload type。
 76     /// This field identifies the format of the RTP payload and determines its interpretation by the
 77     /// application. A profile may specify a default static mapping of payload type codes to payload
 78     /// formats. Additional payload type codes may be defined dynamically through non-RTP means
 79     /// (see Section 3). A set of default mappings for audio and video is specified in the companion
 80     /// RFC 3551 [1]. An RTP source may change the payload type during a session, but this field
 81     /// should not be used for multiplexing separate media streams (see Section 5.2).
 82     /// A receiver must ignore packets with payload types that it does not understand.
 83     /// </summary>
 84     public RtpPayloadType PayloadType { get; private set; }
 85 
 86     /// <summary>
 87     /// sequence number:16 bits
 88     /// 每發送一個RTP 數據報文序列號值加一,接收者也可用來檢測丟失的包或者重建報文序列。
 89     /// 初始的值是隨機的,這樣就使得known-plaintext 攻擊更加困難, 即使源並沒有加密(見9。1),
 90     /// 因為要通過的translator 會做這些事情。關於選擇隨機數方面的技術見[17]。
 91     /// The sequence number increments by one for each RTP data packet sent, and may be used
 92     /// by the receiver to detect packet loss and to restore packet sequence. The initial value of the
 93     /// sequence number should be random (unpredictable) to make known-plaintext attacks on
 94     /// encryption more dificult, even if the source itself does not encrypt according to the method
 95     /// in Section 9.1, because the packets may flow through a translator that does. Techniques for
 96     /// choosing unpredictable numbers are discussed in [17].
 97     /// </summary>
 98     public int SequenceNumber { get; private set; }
 99 
100     /// <summary>
101     /// timestamp:32 bits
102     /// timestamp 反映的是RTP 數據報文中的第一個字段的采樣時刻的時間瞬時值。
103     /// 采樣時間值必須是從恆定的和線性的時間中得到以便於同步和jitter 計算(見第6.4.1 節)。
104     /// 必須保證同步和測量保溫jitter 到來所需要的時間精度(一幀一個tick 一般情況下是不夠的)。
105     /// 時鍾頻率是與payload 所攜帶的數據格式有關的,在profile 中靜態的定義或是在定義格式的payload format 中,
106     /// 或通過non-RTP 方法所定義的payload format 中動態的定義。如果RTP 報文周期的生成,就采用虛擬的(nominal) 
107     /// 采樣時鍾而不是從系統時鍾讀數。例如,在固定比特率的音頻中,timestamp 時鍾會在每個采樣周期時加一。
108     /// 如果音頻應用中從輸入設備中讀入160 個采樣周期的塊,the timestamp 就會每一塊增加160,
109     /// 而不管塊是否傳輸了或是丟棄了。
110     /// 對於序列號來說,timestamp 初始值是隨機的。只要它們是同時(邏輯上)同時生成的,
111     /// 這些連續的的 RTP 報文就會有相同的timestamp,
112     /// 例如,同屬一個視頻幀。正像在MPEG 中內插視頻幀一樣,
113     /// 連續的但不是按順序發送的RTP 報文可能含有相同的timestamp。
114     /// The timestamp reflects the sampling instant of the first octet in the RTP data packet. The
115     /// sampling instant must be derived from a clock that increments monotonically and linearly
116     /// in time to allow synchronization and jitter calculations (see Section 6.4.1). The resolution
117     /// of the clock must be suficient for the desired synchronization accuracy and for measuring
118     /// packet arrival jitter (one tick per video frame is typically not suficient). The clock frequency
119     /// is dependent on the format of data carried as payload and is specified statically in the profile
120     /// or payload format specification that defines the format, or may be specified dynamically for
121     /// payload formats defined through non-RTP means. If RTP packets are generated periodically,
122     /// the nominal sampling instant as determined from the sampling clock is to be used, not a
123     /// reading of the system clock. As an example, for fixed-rate audio the timestamp clock would
124     /// likely increment by one for each sampling period. If an audio application reads blocks covering
125     /// 160 sampling periods from the input device, the timestamp would be increased by 160 for
126     /// each such block, regardless of whether the block is transmitted in a packet or dropped as silent.
127     /// </summary>
128     public long Timestamp { get; private set; }
129 
130     /// <summary>
131     /// SSRC:32 bits
132     /// SSRC 域識別同步源。為了防止在一個會話中有相同的同步源有相同的SSRC identifier, 
133     /// 這個identifier 必須隨機選取。
134     /// 生成隨機 identifier 的算法見目錄A.6 。雖然選擇相同的identifier 概率很小,
135     /// 但是所有的RTP implementation 必須檢測和解決沖突。
136     /// 第8 章描述了沖突的概率和解決機制和RTP 級的檢測機制,根據唯一的 SSRCidentifier 前向循環。
137     /// 如果有源改變了它的源傳輸地址,
138     /// 就必須為它選擇一個新的SSRCidentifier 來避免被識別為循環過的源(見第8.2 節)。
139     /// The SSRC field identifies the synchronization source. This identifier should be chosen
140     /// randomly, with the intent that no two synchronization sources within the same RTP session
141     /// will have the same SSRC identifier. An example algorithm for generating a random identifier
142     /// is presented in Appendix A.6. Although the probability of multiple sources choosing the same
143     /// identifier is low, all RTP implementations must be prepared to detect and resolve collisions.
144     /// Section 8 describes the probability of collision along with a mechanism for resolving collisions
145     /// and detecting RTP-level forwarding loops based on the uniqueness of the SSRC identifier. If
146     /// a source changes its source transport address, it must also choose a new SSRC identifier to
147     /// avoid being interpreted as a looped source (see Section 8.2).
148     /// </summary>
149     public int SSRC { get { return 0; } }
150 
151     /// <summary>
152     /// 每一個RTP包中都有前12個字節定長的頭字段
153     /// The first twelve octets are present in every RTP packet
154     /// </summary>
155     public const int HeaderSize = 12;
156     /// <summary>
157     /// RTP消息頭
158     /// </summary>
159     private byte[] _header;
160     /// <summary>
161     /// RTP消息頭
162     /// </summary>
163     public byte[] Header { get { return _header; } }
164 
165     /// <summary>
166     /// RTP有效載荷長度
167     /// </summary>
168     private int _payloadSize;
169     /// <summary>
170     /// RTP有效載荷長度
171     /// </summary>
172     public int PayloadSize { get { return _payloadSize; } }
173 
174     /// <summary>
175     /// RTP有效載荷
176     /// </summary>
177     private byte[] _payload;
178     /// <summary>
179     /// RTP有效載荷
180     /// </summary>
181     public byte[] Payload { get { return _payload; } }
182 
183     /// <summary>
184     /// RTP消息總長度,包括Header和Payload
185     /// </summary>
186     public int Length { get { return HeaderSize + PayloadSize; } }
187 
188     /// <summary>
189     /// RTP(RFC3550)協議數據包
190     /// </summary>
191     /// <param name="playloadType">數據報文有效載荷類型</param>
192     /// <param name="sequenceNumber">數據報文序列號值</param>
193     /// <param name="timestamp">數據報文采樣時刻</param>
194     /// <param name="data">數據</param>
195     /// <param name="dataSize">數據長度</param>
196     public RtpPacket(
197       RtpPayloadType playloadType, 
198       int sequenceNumber, 
199       long timestamp, 
200       byte[] data, 
201       int dataSize)
202     {
203       // fill changing header fields
204       SequenceNumber = sequenceNumber;
205       Timestamp = timestamp;
206       PayloadType = playloadType;
207 
208       // build the header bistream
209       _header = new byte[HeaderSize];
210 
211       // fill the header array of byte with RTP header fields
212       _header[0] = (byte)((Version << 6) | (Padding << 5) | (Extension << 4) | CC);
213       _header[1] = (byte)((Marker << 7) | (int)PayloadType);
214       _header[2] = (byte)(SequenceNumber >> 8);
215       _header[3] = (byte)(SequenceNumber);
216       for (int i = 0; i < 4; i++)
217       {
218         _header[7 - i] = (byte)(Timestamp >> (8 * i));
219       }
220       for (int i = 0; i < 4; i++)
221       {
222         _header[11 - i] = (byte)(SSRC >> (8 * i));
223       }
224 
225       // fill the payload bitstream
226       _payload = new byte[dataSize];
227       _payloadSize = dataSize;
228 
229       // fill payload array of byte from data (given in parameter of the constructor)
230       Array.Copy(data, 0, _payload, 0, dataSize);
231     }
232 
233     /// <summary>
234     /// RTP(RFC3550)協議數據包
235     /// </summary>
236     /// <param name="playloadType">數據報文有效載荷類型</param>
237     /// <param name="sequenceNumber">數據報文序列號值</param>
238     /// <param name="timestamp">數據報文采樣時刻</param>
239     /// <param name="frame">圖片</param>
240     public RtpPacket(
241       RtpPayloadType playloadType, 
242       int sequenceNumber, 
243       long timestamp, 
244       Image frame)
245     {
246       // fill changing header fields
247       SequenceNumber = sequenceNumber;
248       Timestamp = timestamp;
249       PayloadType = playloadType;
250 
251       // build the header bistream
252       _header = new byte[HeaderSize];
253 
254       // fill the header array of byte with RTP header fields
255       _header[0] = (byte)((Version << 6) | (Padding << 5) | (Extension << 4) | CC);
256       _header[1] = (byte)((Marker << 7) | (int)PayloadType);
257       _header[2] = (byte)(SequenceNumber >> 8);
258       _header[3] = (byte)(SequenceNumber);
259       for (int i = 0; i < 4; i++)
260       {
261         _header[7 - i] = (byte)(Timestamp >> (8 * i));
262       }
263       for (int i = 0; i < 4; i++)
264       {
265         _header[11 - i] = (byte)(SSRC >> (8 * i));
266       }
267 
268       // fill the payload bitstream
269       using (MemoryStream ms = new MemoryStream())
270       {
271         frame.Save(ms, ImageFormat.Jpeg);
272         _payload = ms.ToArray();
273         _payloadSize = _payload.Length;
274       }
275     }
276 
277     /// <summary>
278     /// RTP(RFC3550)協議數據包
279     /// </summary>
280     /// <param name="packet">數據包</param>
281     /// <param name="packetSize">數據包長度</param>
282     public RtpPacket(byte[] packet, int packetSize)
283     {
284       //check if total packet size is lower than the header size
285       if (packetSize >= HeaderSize)
286       {
287         //get the header bitsream
288         _header = new byte[HeaderSize];
289         for (int i = 0; i < HeaderSize; i++)
290         {
291           _header[i] = packet[i];
292         }
293 
294         //get the payload bitstream
295         _payloadSize = packetSize - HeaderSize;
296         _payload = new byte[_payloadSize];
297         for (int i = HeaderSize; i < packetSize; i++)
298         {
299           _payload[i - HeaderSize] = packet[i];
300         }
301 
302         //interpret the changing fields of the header
303         PayloadType = (RtpPayloadType)(_header[1] & 127);
304         SequenceNumber = UnsignedInt(_header[3]) + 256 * UnsignedInt(_header[2]);
305         Timestamp = UnsignedInt(_header[7]) 
306           + 256 * UnsignedInt(_header[6]) 
307           + 65536 * UnsignedInt(_header[5]) 
308           + 16777216 * UnsignedInt(_header[4]);
309       }
310     }
311 
312     /// <summary>
313     /// 將消息轉換成byte數組
314     /// </summary>
315     /// <returns>消息byte數組</returns>
316     public byte[] ToArray()
317     {
318       byte[] packet = new byte[Length];
319 
320       Array.Copy(_header, 0, packet, 0, HeaderSize);
321       Array.Copy(_payload, 0, packet, HeaderSize, PayloadSize);
322 
323       return packet;
324     }
325 
326     /// <summary>
327     /// 將消息體轉換成圖片
328     /// </summary>
329     /// <returns>圖片</returns>
330     public Bitmap ToBitmap()
331     {
332       return new Bitmap(new MemoryStream(_payload));
333     }
334 
335     /// <summary>
336     /// 將消息體轉換成圖片
337     /// </summary>
338     /// <returns>圖片</returns>
339     public Image ToImage()
340     {
341       return Image.FromStream(new MemoryStream(_payload));
342     }
343 
344     /// <summary>
345     /// 將圖片轉換成消息
346     /// </summary>
347     /// <param name="playloadType">數據報文有效載荷類型</param>
348     /// <param name="sequenceNumber">數據報文序列號值</param>
349     /// <param name="timestamp">數據報文采樣時刻</param>
350     /// <param name="frame">圖片幀</param>
351     /// <returns>
352     /// RTP消息
353     /// </returns>
354     public static RtpPacket FromImage(
355       RtpPayloadType playloadType, 
356       int sequenceNumber, 
357       long timestamp, 
358       Image frame)
359     {
360       return new RtpPacket(playloadType, sequenceNumber, timestamp, frame);
361     }
362 
363     /// <summary>
364     /// return the unsigned value of 8-bit integer nb
365     /// </summary>
366     /// <param name="nb"></param>
367     /// <returns></returns>
368     private static int UnsignedInt(int nb)
369     {
370       if (nb >= 0)
371         return (nb);
372       else
373         return (256 + nb);
374     }
375   }

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM