前言:
這節主要是練習下PCA,PCA Whitening以及ZCA Whitening在2D數據上的使用,2D的數據集是45個數據點,每個數據點是2維的。參考的資料是:Exercise:PCA in 2D。結合前面的博文Deep learning:十(PCA和whitening)理論知識,來進一步理解PCA和Whitening的作用。
matlab某些函數:
scatter:
scatter(X,Y,<S>,<C>,’<type>’);
<S> – 點的大小控制,設為和X,Y同長度一維向量,則值決定點的大小;設為常數或缺省,則所有點大小統一。
<C> – 點的顏色控制,設為和X,Y同長度一維向量,則色彩由值大小線性分布;設為和X,Y同長度三維向量,則按colormap RGB值定義每點顏色,[0,0,0]是黑色,[1,1,1]是白色。缺省則顏色統一。
<type> – 點型:可選filled指代填充,缺省則畫出的是空心圈。
plot:
plot可以用來畫直線,比如說plot([1 2],[0 4])是畫出一條連接(1,0)到(2,4)的直線,主要點坐標的對應關系。
實驗過程:
一、首先download這些二維數據,因為數據是以文本方式保存的,所以load的時候是以ascii碼讀入的。然后對輸入樣本進行協方差矩陣計算,並計算出該矩陣的SVD分解,得到其特征值向量,在原數據點上畫出2條主方向,如下圖所示:
二、將經過PCA降維后的新數據在坐標中顯示出來,如下圖所示:
三、用新數據反過來重建原數據,其結果如下圖所示:
四、使用PCA whitening的方法得到原數據的分布情況如:
五、使用ZCA whitening的方法得到的原數據的分布如下所示:
PCA whitening和ZCA whitening不同之處在於處理后的結果數據的方差不同,盡管不同維度的方差是相等的。
實驗代碼:
close all %%================================================================ %% Step 0: Load data % We have provided the code to load data from pcaData.txt into x. % x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to % the kth data point.Here we provide the code to load natural image data into x. % You do not need to change the code below. x = load('pcaData.txt','-ascii'); figure(1); scatter(x(1, :), x(2, :)); title('Raw data'); %%================================================================ %% Step 1a: Implement PCA to obtain U % Implement PCA to obtain the rotation matrix U, which is the eigenbasis % sigma. % -------------------- YOUR CODE HERE -------------------- u = zeros(size(x, 1)); % You need to compute this [n m] = size(x); %x = x-repmat(mean(x,2),1,m);%預處理,均值為0 sigma = (1.0/m)*x*x'; [u s v] = svd(sigma); % -------------------------------------------------------- hold on plot([0 u(1,1)], [0 u(2,1)]);%畫第一條線 plot([0 u(1,2)], [0 u(2,2)]);%第二條線 scatter(x(1, :), x(2, :)); hold off %%================================================================ %% Step 1b: Compute xRot, the projection on to the eigenbasis % Now, compute xRot by projecting the data on to the basis defined % by U. Visualize the points by performing a scatter plot. % -------------------- YOUR CODE HERE -------------------- xRot = zeros(size(x)); % You need to compute this xRot = u'*x; % -------------------------------------------------------- % Visualise the covariance matrix. You should see a line across the % diagonal against a blue background. figure(2); scatter(xRot(1, :), xRot(2, :)); title('xRot'); %%================================================================ %% Step 2: Reduce the number of dimensions from 2 to 1. % Compute xRot again (this time projecting to 1 dimension). % Then, compute xHat by projecting the xRot back onto the original axes % to see the effect of dimension reduction % -------------------- YOUR CODE HERE -------------------- k = 1; % Use k = 1 and project the data onto the first eigenbasis xHat = zeros(size(x)); % You need to compute this xHat = u*([u(:,1),zeros(n,1)]'*x); % -------------------------------------------------------- figure(3); scatter(xHat(1, :), xHat(2, :)); title('xHat'); %%================================================================ %% Step 3: PCA Whitening % Complute xPCAWhite and plot the results. epsilon = 1e-5; % -------------------- YOUR CODE HERE -------------------- xPCAWhite = zeros(size(x)); % You need to compute this xPCAWhite = diag(1./sqrt(diag(s)+epsilon))*u'*x; % -------------------------------------------------------- figure(4); scatter(xPCAWhite(1, :), xPCAWhite(2, :)); title('xPCAWhite'); %%================================================================ %% Step 3: ZCA Whitening % Complute xZCAWhite and plot the results. % -------------------- YOUR CODE HERE -------------------- xZCAWhite = zeros(size(x)); % You need to compute this xZCAWhite = u*diag(1./sqrt(diag(s)+epsilon))*u'*x; % -------------------------------------------------------- figure(5); scatter(xZCAWhite(1, :), xZCAWhite(2, :)); title('xZCAWhite'); %% Congratulations! When you have reached this point, you are done! % You can now move onto the next PCA exercise. :)
參考資料:
Deep learning:十(PCA和whitening)