眾所周知,Hadoop對處理單個大文件比處理多個小文件更有效率,另外單個文件也非常占用HDFS的存儲空間。所以往往要將其合並起來。
1,getmerge
hadoop有一個命令行工具getmerge,用於將一組HDFS上的文件復制到本地計算機以前進行合並
參考:http://hadoop.apache.org/common/docs/r0.19.2/cn/hdfs_shell.html
使用方法:hadoop fs -getmerge <src> <localdst> [addnl]
接受一個源目錄和一個目標文件作為輸入,並且將源目錄中所有的文件連接成本地目標文件。addnl是可選的,用於指定在每個文件結尾添加一個換行符。
多嘴幾句:調用文件系統(FS)Shell命令應使用 bin/hadoop fs <args>的形式。 所有的的FS shell命令使用URI路徑作為參數。URI格式是scheme://authority/path。
2.putmerge
將本地小文件合並上傳到HDFS文件系統中。
一種方法可以現在本地寫一個腳本,先將一個文件合並為一個大文件,然后將整個大文件上傳,這種方法占用大量的本地磁盤空間;
另一種方法如下,在復制的過程中上傳。參考:《hadoop in action》
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
//參數1為本地目錄,參數2為HDFS上的文件
public class PutMerge {
public static void putMergeFunc(String LocalDir, String fsFile) throws IOException
{
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf); //fs是HDFS文件系統
FileSystem local = FileSystem.getLocal(conf); //本地文件系統
Path localDir = new Path(LocalDir);
Path HDFSFile = new Path(fsFile);
FileStatus[] status = local.listStatus(localDir); //得到輸入目錄
FSDataOutputStream out = fs.create(HDFSFile); //在HDFS上創建輸出文件
for(FileStatus st: status)
{
Path temp = st.getPath();
FSDataInputStream in = local.open(temp);
IOUtils.copyBytes(in, out, 4096, false); //讀取in流中的內容放入out
in.close(); //完成后,關閉當前文件輸入流
}
out.close();
}
public static void main(String [] args) throws IOException
{
String l = "/home/kqiao/hadoop/MyHadoopCodes/putmergeFiles";
String f = "hdfs://ubuntu:9000/user/kqiao/test/PutMergeTest";
putMergeFunc(l,f);
}
}
3.將小文件打包成SequenceFile的MapReduce任務
來自:《hadoop權威指南》
實現將整個文件作為一條記錄處理的InputFormat:
public class WholeFileInputFormat
extends FileInputFormat<NullWritable, BytesWritable> {
@Override
protected boolean isSplitable(JobContext context, Path file) {
return false;
}
@Override
public RecordReader<NullWritable, BytesWritable> createRecordReader(
InputSplit split, TaskAttemptContext context) throws IOException,
InterruptedException {
WholeFileRecordReader reader = new WholeFileRecordReader();
reader.initialize(split, context);
return reader;
}
}
實現上面類中使用的定制的RecordReader:
/實現一個定制的RecordReader,這六個方法均為繼承的RecordReader要求的虛函數。
//實現的RecordReader,為自定義的InputFormat服務
public class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable>{
private FileSplit fileSplit;
private Configuration conf;
private BytesWritable value = new BytesWritable();
private boolean processed = false;
@Override
public void close() throws IOException {
// do nothing
}
@Override
public NullWritable getCurrentKey() throws IOException,
InterruptedException {
return NullWritable.get();
}
@Override
public BytesWritable getCurrentValue() throws IOException,
InterruptedException {
return value;
}
@Override
public float getProgress() throws IOException, InterruptedException {
return processed? 1.0f : 0.0f;
}
@Override
public void initialize(InputSplit split, TaskAttemptContext context)
throws IOException, InterruptedException {
this.fileSplit = (FileSplit) split;
this.conf = context.getConfiguration();
}
//process表示記錄是否已經被處理過
@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
if (!processed) {
byte[] contents = new byte[(int) fileSplit.getLength()];
Path file = fileSplit.getPath();
FileSystem fs = file.getFileSystem(conf);
FSDataInputStream in = null;
try {
in = fs.open(file);
//將file文件中 的內容放入contents數組中。使用了IOUtils實用類的readFully方法,將in流中得內容放入
//contents字節數組中。
IOUtils.readFully(in, contents, 0, contents.length);
//BytesWritable是一個可用做key或value的字節序列,而ByteWritable是單個字節。
//將value的內容設置為contents的值
value.set(contents, 0, contents.length);
} finally {
IOUtils.closeStream(in);
}
processed = true;
return true;
}
return false;
}
}
將小文件打包成SequenceFile:
public class SmallFilesToSequenceFileConverter extends Configured implements Tool{
//靜態內部類,作為mapper
static class SequenceFileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable>
{
private Text filenameKey;
//setup在task開始前調用,這里主要是初始化filenamekey
@Override
protected void setup(Context context)
{
InputSplit split = context.getInputSplit();
Path path = ((FileSplit) split).getPath();
filenameKey = new Text(path.toString());
}
@Override
public void map(NullWritable key, BytesWritable value, Context context)
throws IOException, InterruptedException{
context.write(filenameKey, value);
}
}
@Override
public int run(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf);
job.setJobName("SmallFilesToSequenceFileConverter");
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//再次理解此處設置的輸入輸出格式。。。它表示的是一種對文件划分,索引的方法
job.setInputFormatClass(WholeFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
//此處的設置是最終輸出的key/value,一定要注意!
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(BytesWritable.class);
job.setMapperClass(SequenceFileMapper.class);
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String [] args) throws Exception
{
int exitCode = ToolRunner.run(new SmallFilesToSequenceFileConverter(), args);
System.exit(exitCode);
}
}
