1.系統的准備:
假設有一個PDB文件含有500多個殘基並且構成兩條鏈。首先修飾PDB文件:除去remarks, connectivity data 和 HETATM lines的數據(不包括晶體水),然后增加TER標簽在蛋白鏈間和改變一些氨基酸的名字如:HIS to HIE, HID or HIP;和CYS。
tleap -s -f leaprc.ff99SB (告訴tleap將載入ff99SB力場,接下來載入蛋白)
> mol = loadpdb protein.pdb (這將增加氫到結構中)
> solvatebox mol TIP3PBOX 12.0 (加12埃的水盒子)
> charge mol (檢查分子的電荷)
> addions mol Na+ 0 (增加抗衡離子來中性化系統)
> saveamberparm mol protein.prmtop protein.inpcrd (創建prmtop and inpcrd文件)
> quit
protein.prmtop文件含有分子拓撲性,力場參數,原子和殘基名字。rotein.inpcrd文件含有起始的坐標文件,用這兩個文件產生PDB文件。
ambpdb -p protein.prmtop < protein.inpcrd > protein_solvated.pdb
2.能量最小化:
將運行兩步最小化:第一步固定蛋白最小化水分子位置,第二步最小化整個系統。當運行sander時,應該用控制文件:min1.in 和 min2.in
energy minimization stage 1
&cntrl
imin=1, maxcyc=5000, ncyc=2500,
cut=10.0, ntb=1,
ntc=1, ntf=1,
ntpr=10,
ntr=1,
restraintmask=':1-500',
restraint_wt=2.0
/
Information in the input file:
imin=1 perform minimization
maxcyc=5000 maximum number of minimization cycles
ncyc=2500 method of minimization will be switched from steepest descent to conjugate gradient after ncyc cycles
cut=10.0 specify the nonbonded cutoff, in Angstroms
ntb=1 periodic boundary, constant volume
ntc=1 SHAKE is not performed (for better energy convergence)
ntf=1 force evaluation, complete interaction is calculated
ntpr=10 every ntpr steps energy information will be printed in human-readable form to mdout file
ntr=1 flag for restraining specified atoms using harmonic potential
restraintmask=':1-500' string that specifies the restrained residues
restraint_wt=2.0 the weight (in kcal/mol-A^2) for the positional restraints
運行:sander -O -i min1.in -p protein.prmtop -c protein.inpcrd -o protein_min1.out -r protein_min1.rst -ref protein.inpcrd
mdin control data for the min/md run ;prmtop molecular topology, force field, atom and residue names ;inpcrd initial coordinates
mdout user readable state info and diagnostics ;rstrt final coordinates and velocities ;refc reference coords for position restraints
energy minimization stage 2
&cntrl
imin=1, maxcyc=10000, ncyc=5000,
cut=10.0, ntb=1,
ntc=1, ntf=1,
ntpr=10,
/
運行:sander -O -i min2.in -p protein.prmtop -c protein_min1.rst -o protein_min2.out -r protein_min2.rst
3.加熱
給系統加熱從0K到300K並在體積不變下帶有位置限制運行50ps動力學。
heating
&cntrl
imin=0,irest=0,ntx=1,
nstlim=25000,dt=0.002,
ntc=2,ntf=2,
cut=10.0, ntb=1,
ntpr=500, ntwx=500,
ntt=3, gamma_ln=2.0,
tempi=0.0, temp0=300.0,
ntr=1, restraintmask=':1-500',
restraint_wt=1.0,
nmropt=1
/
&wt TYPE='TEMP0', istep1=0, istep2=25000,
value1=0.1, value2=300.0, /
&wt TYPE='END' /
imin=0 do molecular dynamics ;irest=0 flag to restart the run, no effect ;ntx=1 no initial velocity information ;nstlim=25000 number of MD-steps to be performed
dt=0.002 time step (psec) ;ntc=2 flag for SHAKE, bonds involving hydrogen are constrained ;ntf=2 force evaluation, bond interactions involving H-atoms omitted
ntwx=500 every ntwx steps the coordinates will be written to mdcrd file ;ntt=3 use Langevin thermostat ;gamma_ln=2.0 collision frequency in temperature regulation
tempi=0.0 initial temperature ;temp0=300.0 reference temperature ;nmropt=1 varying conditions ;TYPE='TEMP0' varies the target temperature
istep1=0, istep2=25000 change is applied over steps istep1 through istep2 ;value1=0.1, value2=300.0 values of the change corresponding to istep1 and istep2, respectively
運行:sander -O -i heat.in -p protein.prmtop -c protein_min2.rst -o protein_heat.out -r protein_heat.rst -x protein_heat.mdcrd -ref protein_min2.rst
4.平衡
為了平衡系統,將運行500ps的分子動力學在常壓下沒有位置的限制
equilibration
&cntrl
imin=0, irest=1, ntx=5,
nstlim=250000, dt=0.002,
ntc=2, ntf=2,
cut=10.0, ntb=2, ntp=1, taup=2.0,
ntpr=500, ntwx=500, ntwr=5000,
ntt=3, gamma_ln=2.0,
temp0=300.0,
/
Information in the input file:
irest=1, ntx=5 restart calculation, requires velocities in coordinate input file ;ntb=2 periodic boundary, constant pressure ;ntp=1 flag for constant pressure dynamics, md with isotropic position scaling
taup=2.0 pressure relaxation time (in ps) ;ntwr=5000 every ntwr steps during dynamics, the restrt file will be written, ensuring that recovery from a crash will not be so painful
運行:sander -O -i equil.in -p protein.prmtop -c protein_heat.rst -o protein_equil.out -r protein_equil.rst -x protein_equil.mdcrd
5.Production dynamics
在常壓下運行10ns動力學。獲得的軌跡被用於分析
production dynamics
&cntrl
imin=0, irest=1, ntx=5,
nstlim=5000000, dt=0.002,
ntc=2, ntf=2,
cut=10.0, ntb=2, ntp=1, taup=2.0,
ntpr=1000, ntwx=1000, ntwr=50000,
ntt=3, gamma_ln=2.0,
temp0=300.0,
/
prod.in文件於equil.in的差異主要在於nstlim, ntpr, ntwx, and ntwr值的不同
當運行five million MD-steps時,他是合理的平行的運行:
mpirun -np 32 sander.MPI -O -i prod.in -p protein.prmtop -c protein_equil.rst -o protein_prod.out -r protein_prod.rst -x protein_prod.mdcrd