HBase性能優化方法總結(一):表的設計


本文主要是從HBase應用程序設計與開發的角度,總結幾種常用的性能優化方法。有關HBase系統配置級別的優化,可參考:淘寶Ken Wu同學的博客

下面是本文總結的第一部分內容:表的設計相關的優化方法。

1. 表的設計

1.1 Pre-Creating Regions

默認情況下,在創建HBase表的時候會自動創建一個region分區,當導入數據的時候,所有的HBase客戶端都向這一個region寫數據,直到這個region足夠大了才進行切分。一種可以加快批量寫入速度的方法是通過預先創建一些空的regions,這樣當數據寫入HBase時,會按照region分區情況,在集群內做數據的負載均衡。

有關預分區,詳情參見:Table Creation: Pre-Creating Regions,下面是一個例子:

public static boolean createTable(HBaseAdmin admin, HTableDescriptor table, byte[][] splits)
throws IOException {
try {
admin.createTable(table, splits);
return true;
} catch (TableExistsException e) {
logger.info("table " + table.getNameAsString() + " already exists");
// the table already exists...
return false;
}
}

public static byte[][] getHexSplits(String startKey, String endKey, int numRegions) {
byte[][] splits = new byte[numRegions-1][];
BigInteger lowestKey = new BigInteger(startKey, 16);
BigInteger highestKey = new BigInteger(endKey, 16);
BigInteger range = highestKey.subtract(lowestKey);
BigInteger regionIncrement = range.divide(BigInteger.valueOf(numRegions));
lowestKey = lowestKey.add(regionIncrement);
for(int i=0; i < numRegions-1;i++) {
BigInteger key = lowestKey.add(regionIncrement.multiply(BigInteger.valueOf(i)));
byte[] b = String.format("%016x", key).getBytes();
splits[i] = b;
}
return splits;
}

1.2 Row Key

HBase中row key用來檢索表中的記錄,支持以下三種方式:

  • 通過單個row key訪問:即按照某個row key鍵值進行get操作;
  • 通過row key的range進行scan:即通過設置startRowKey和endRowKey,在這個范圍內進行掃描;
  • 全表掃描:即直接掃描整張表中所有行記錄。

在HBase中,row key可以是任意字符串,最大長度64KB,實際應用中一般為10~100bytes,存為byte[]字節數組,一般設計成定長的

row key是按照字典序存儲,因此,設計row key時,要充分利用這個排序特點,將經常一起讀取的數據存儲到一塊,將最近可能會被訪問的數據放在一塊。

舉個例子:如果最近寫入HBase表中的數據是最可能被訪問的,可以考慮將時間戳作為row key的一部分,由於是字典序排序,所以可以使用Long.MAX_VALUE - timestamp作為row key,這樣能保證新寫入的數據在讀取時可以被快速命中。

1.3 Column Family

不要在一張表里定義太多的column family。目前Hbase並不能很好的處理超過2~3個column family的表。因為某個column family在flush的時候,它鄰近的column family也會因關聯效應被觸發flush,最終導致系統產生更多的I/O。感興趣的同學可以對自己的HBase集群進行實際測試,從得到的測試結果數據驗證一下。

1.4 In Memory

創建表的時候,可以通過HColumnDescriptor.setInMemory(true)將表放到RegionServer的緩存中,保證在讀取的時候被cache命中。

1.5 Max Version

創建表的時候,可以通過HColumnDescriptor.setMaxVersions(int maxVersions)設置表中數據的最大版本,如果只需要保存最新版本的數據,那么可以設置setMaxVersions(1)。

1.6 Time To Live

創建表的時候,可以通過HColumnDescriptor.setTimeToLive(int timeToLive)設置表中數據的存儲生命期,過期數據將自動被刪除,例如如果只需要存儲最近兩天的數據,那么可以設置setTimeToLive(2 * 24 * 60 * 60)。

1.7 Compact & Split

在HBase中,數據在更新時首先寫入WAL 日志(HLog)和內存(MemStore)中,MemStore中的數據是排序的,當MemStore累計到一定閾值時,就會創建一個新的MemStore,並且將老的MemStore添加到flush隊列,由單獨的線程flush到磁盤上,成為一個StoreFile。於此同時, 系統會在zookeeper中記錄一個redo point,表示這個時刻之前的變更已經持久化了(minor compact)

StoreFile是只讀的,一旦創建后就不可以再修改。因此Hbase的更新其實是不斷追加的操作。當一個Store中的StoreFile達到一定的閾值后,就會進行一次合並(major compact),將對同一個key的修改合並到一起,形成一個大的StoreFile,當StoreFile的大小達到一定閾值后,又會對 StoreFile進行分割(split),等分為兩個StoreFile。

由於對表的更新是不斷追加的,處理讀請求時,需要訪問Store中全部的StoreFile和MemStore,將它們按照row key進行合並,由於StoreFile和MemStore都是經過排序的,並且StoreFile帶有內存中索引,通常合並過程還是比較快的。

實際應用中,可以考慮必要時手動進行major compact,將同一個row key的修改進行合並形成一個大的StoreFile。同時,可以將StoreFile設置大些,減少split的發生。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM