过拟合产生的原因? 过拟合的表现:模型在训练集上误差很小,在测试集上误差很大。 过拟合主要由两个方面决定:一是数据集,二是模型。 我认为过拟合问题目前来说只能减少不能避免。 数据集角度: 我 ...
过拟合产生的原因? 过拟合的表现:模型在训练集上误差很小,在测试集上误差很大。 过拟合主要由两个方面决定:一是数据集,二是模型。 我认为过拟合问题目前来说只能减少不能避免。 数据集角度: 我 ...
ResNet的核心内容之一,即“Deeper Bottleneck Architectures”(简称DBA),一言概之,bottleneck是一种特殊的残差结构。 Resnet论文 ...
self参数 self指的是实例Instance本身,在Python类中规定,函数的第一个参数是实例对象本身,并且约定俗成,把其名字写为self, 也就是说,类中的方法的第一个参数一定要是self ...
全连接层的输入是固定大小的,如果输入向量的维数不固定,那么全连接的权值参数的量也是不固定的,就会造成网络的动态变化,无法实现参数训练目的。 全连接层的计算其实相当于输入的特征图数据矩阵和全连接 ...
在卷积神经网络中,感受野定义:CNN每一层输出的特征图上的像素点在原始图像上的映射的区域大小。 RF (receptive field)描述了两个特征映射(Feature Maps)上神 ...
CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体、 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量。 ...
那Top-1 Accuracy和Top-5 Accuracy是指什么呢?区别在哪呢? 首先是TOP-5正确率,举个例子,比如你训练好了一个网络,你要用这个网络去进行图片分类任务,假设 ...
原文链接: https://www.zhihu.com/question/68730628/answer/607608890BN和IN其实本质上是同一个东西,只是IN是作用于单张图片,但是BN作用于 ...
输入模式与网络架构间的对应关系: 向量数据:密集连接网络(Dense层) 图像数据:二维卷积神经网络 声音数据(比如波形):一维卷积神经网络(首选)或循环神经网络 文本数据:一维卷 ...