(注:本文译自一篇博客,作者行文较随意,我尽量按原意翻译,但作者所介绍的知识还是非常好的,包括例子的选择、理论的介绍都很到位,由浅入深,源文地址) 近些年来,人工智能领域又活跃起来,除了传 ...
(注:本文译自一篇博客,作者行文较随意,我尽量按原意翻译,但作者所介绍的知识还是非常好的,包括例子的选择、理论的介绍都很到位,由浅入深,源文地址) 近些年来,人工智能领域又活跃起来,除了传 ...
IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行。)中找到下载,下载后放到~/.keras/datasets/目录下,即可正 ...
接下来介绍在paddlepaddle中如何使用多CPU来加速训练。 接着前面几节讲的手写数字识别部分,在启动训练前,加载数据和网络结构的代码部分均不变。 View ...
将训练好的模型保存到磁盘之后,应用程序可以随时加载模型,完成预测任务。但是在日常训练工作中我们会遇到一些突发情况,导致训练过程主动或被动的中断。如果训练一个模型需要花费几天的训练时间,中断后从初始状态 ...
training set 训练集 validation set 验证集 test set测试集 这些与衡量你做的怎么样有关 当你知道怎么衡量你在一个问题的表现,问题就解决了一半。(衡量表现 ...
在“手写数字识别”案例的快速入门中,我们调用飞桨提供的API(paddle.dataset.mnist)加载MNIST数据集。但在工业实践中,我们面临的任务和数据环境千差万别,需要编写适 ...
深度学习在很多机器学习领域均有非常出色的表现,在图像识别、语音识别、自然语言处理、机器人、网络广告投放、医学自动诊断和金融等各大领域有着广泛的应用。面对繁多的应用场景,深度学习框架可以节省大量而繁琐的 ...
主要涵盖如下内容: 卷积神经网络:卷积神经网络(Convolutional Neural Networks, CNN)是计算机视觉技术最经典的模型结构。这里主要介绍卷积神经网络的常用模块,包 ...
在模型训练部分,为了保证模型的真实效果,我们需要对模型进行一些调试和优化,主要分为以下五个环节: 计算分类准确率,观测模型训练效果。 交叉熵损失函数只能作为优化目标,无 ...
一. 入门 对于深度学习和LSTM的新手,可参考零基础入门深度学习系列文章,这些文章用通俗易懂的方式介绍了深度学习的基础知识,包括前向传播和反向传播的数学推导等,适合入门深度学习和LSTM。 零基 ...