参考:《机器学习》Tom版 以及http://blog.csdn.net/v_july_v/article/details/7577684 一、简介 决策树是一个预测模型;他代表的是对象属性与对象 ...
参考:《机器学习》Tom版 以及http://blog.csdn.net/v_july_v/article/details/7577684 一、简介 决策树是一个预测模型;他代表的是对象属性与对象 ...
转自别处 有很多与此类似的文章 也不知道谁是原创 因原文由少于错误 所以下文对此有修改并且做了适当的重点标记(横线见的内容没大明白 并且有些复杂,后面的运行流程依据前面的得出的算子进行分类) ...
此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法。SMO由微软研究 ...
大部分内容援引自别处 有少许修改 EM聚类算法一般多用于为了对数据进行训练而确定相关公式中的参数 1.一般概念介绍 最大期望算法(Expectation-maximization algo ...
1.基本介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相 ...
(借鉴于网络资料,有修改) 一、概念介绍 K-means算法是硬聚类算法,是典型的局域原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的 ...
转自:http://www.cnblogs.com/vivounicorn/archive/2011/09/23/2186483.html 为便于理解 有修改 一、基本思想 1、基 ...
SVM(一)线性分类器 线性分类器(一定意义上,也可以叫做感知机) 是最简单也很有效的分类器形式.在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念. 用一个二维空间里 ...
援引:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html 1.概念 k-means 算法接受输入量 k ;然 ...