在本系列上一篇《【几何系列】复数基础与二维空间旋转》讲述了复数和二维旋转之间的联系。 在本文,向量是线性代数中的基本知识,本文只会侧重它们在计算机图形学和旋转几何学中的要点。 向量的记号 向量( ...
在本系列上一篇《【几何系列】复数基础与二维空间旋转》讲述了复数和二维旋转之间的联系。 在本文,向量是线性代数中的基本知识,本文只会侧重它们在计算机图形学和旋转几何学中的要点。 向量的记号 向量( ...
上一篇《【几何系列】向量:向量乘法(标量积、向量积)和向量插值》讲了向量,向量是特殊的矩阵,行向量是 $n\times 1$ 矩阵,列向量是 $1\times n$ 矩阵。 一般的 $m\times ...
本文接着上一篇《几何系列】矩阵(一):矩阵乘法和逆矩阵》继续介绍矩阵。 转置 矩阵的转置比较简单,就是行和列互相调换,可以用上标 $T$ 表示某个矩阵的转置。 $$A^T=(b_{ij})$$ ...
本文我们讨论复数及其旋转的含义。复数很有意思,本文介绍了复数的基本定义和性质,以及它关于旋转的几何意义。 复数对于旋转的表示非常重要: 1. 它引入了旋转算子(rotational operato ...
William Rowan Hamilton 在 1843 年发明了四元数(quaternions)。他努力推广四元数来描述三维空间,不过当时有很多数学家反对,认为四元数很邪恶。 不过在一个世纪之后 ...