《python深度学习》笔记---5.2-3、猫狗分类(基本模型) 一、总结 一句话总结: 模型的话也是比较普通的卷积神经网络,就是图像数据用的生成器:ImageDataGenerator ...
《python深度学习》笔记---5.2-3、猫狗分类(基本模型) 一、总结 一句话总结: 模型的话也是比较普通的卷积神经网络,就是图像数据用的生成器:ImageDataGenerator ...
《python深度学习》笔记---5.4-3、卷积网络可视化-热力图 一、总结 一句话总结: 【一张图像的哪一部分让卷积神经网络做出了最终的分类决策】:可视化类激活的热力图,它有助于了解一张图像 ...
《python深度学习》笔记---6.1-2、word embedding-利用 Embedding 层学习词嵌入 一、总结 一句话总结: 【考虑到仅查看每条评论的前 20 个单词】:得到的验证 ...
《python深度学习》笔记---5、CNN的多个卷积核为什么能提取到不同的特征 一、总结 一句话总结: 过滤器的权重是随机初始化的 只有卷积核学习到不同的特征,才会减少成本函数 随机初始化 ...
《python深度学习》笔记---5.2-2、猫狗分类(图片数据处理) 一、总结 一句话总结: 【将训练数据中的猫狗头像分训练集、验证集、测试集分好】:其实就是将训练数据中的猫狗头像分训练集、验 ...
《python深度学习》笔记---5.3-2、猫狗分类(使用预训练网络-实战) 一、总结 一句话总结: 【卷积就是特征提取】:从预训练网络训练猫狗分类,可以更加方便的理解卷积层就是特征提取 【 ...
《python深度学习》笔记---6.1-3、word embedding-使用预训练的词嵌入 一、总结 一句话总结: 【将文本转换为能处理的格式】:将原始文本转换为神经网络能够处理的格式。 ...
《python深度学习》笔记---8.1、使用LSTM生成文本 一、总结 一句话总结: 其实原理非常简单,就是单层的LSTM把训练数据中单词与字符的统计规律学好,然后softmax层相当于分类对 ...
《python深度学习》笔记---5.3-1、猫狗分类(使用预训练网络) 一、总结 一句话总结: 【小型图像数据集】:想要将深度学习应用于小型图像数据集,一种常用且非常高效的方法是使用预训练网络 ...