花费 54 ms
gym 搭建 RL 环境

gym调用 gym的调用遵从以下的顺序 env = gym.make('x') observation = env.reset() for i in range(time_steps): env.render() action = policy(observation ...

Tue Jul 21 07:14:00 CST 2020 0 1132
强化学习仿真环境搭建入门Getting Started with OpenAI gym

gym入门 gym是用于开发和比较强化学习算法的工具包。它不对代理的结构做任何假设,并且与任何数字计算库(例如TensorFlow或Theano)兼容。 gym库是测试问题(环境)的集合,您可以用来制定强化学习算法。这些环境具有共享的接口,使您可以编写常规算法。 安装 首先,您需要安装 ...

Wed Sep 09 00:05:00 CST 2020 0 984
RL实践2——RL环境gym搭建

RL回顾 首先先来回顾一下强化学习问题中,环境Env 和 代理Agent 分别承担的角色和作用。 RL组成要素是Agent、Env 代理和环境 分别承担的作用 Agent: 由Po ...

Thu Sep 03 19:40:00 CST 2020 0 443

 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM