机器学习实战-之SVM核函数与案例
在现实任务中,原始样本空间中可能不存在这样可以将样本正确分为两类的超平面,但是我们知道如果原始空间的维数是有限的,也就是说属性数是有限的,则一定存在一个高维特征空间能够将样本划分。 事实上,在做 ...
在现实任务中,原始样本空间中可能不存在这样可以将样本正确分为两类的超平面,但是我们知道如果原始空间的维数是有限的,也就是说属性数是有限的,则一定存在一个高维特征空间能够将样本划分。 事实上,在做 ...
定义: 支持向量机SVM(Support vector machine)是一种二值分类器方法,其基本是思想是:找到一个能够将两类分开的线性可分的直线(或者超平面)。实际上有许多条直线(或超平面)可以将 ...