[补充] 这是我时隔差不多两年后, 回来编辑这篇文章加的这段补充, 说实话看到这么多评论很是惊讶, 有很多评论不是我不想回复, 真的是时间久了, 很多细节我都忘记了, 无力回复, 非常抱歉. ...
[补充] 这是我时隔差不多两年后, 回来编辑这篇文章加的这段补充, 说实话看到这么多评论很是惊讶, 有很多评论不是我不想回复, 真的是时间久了, 很多细节我都忘记了, 无力回复, 非常抱歉. ...
一. GBDT的经典paper:《Greedy Function Approximation:A Gradient Boosting Machine》 Abstract Function appr ...
AdaBoost(Adaptive Boosting):自适应提升方法。 1、AdaBoost算法介绍 AdaBoost是Boosting方法中最优代表性的提升算法。该方法通过在每轮降低分对样例的 ...
第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式。 ...
1.基本思想: 综合某些专家的判断,往往要比一个专家单独的判断要好。在”强可学习”和”弱可学习”的概念上来说就是我们通过对多个弱可学习的算法进行”组合提升或者说是强化”得到一个性能赶超强可学习算法的 ...
集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务。集成学习通过将多个学习器进行结合,常可以获得比单一学习器显著优越的泛化性能。这对“弱学习器”尤为明显,因此集成学习 ...